
NEUROPLASTICITY
FROM BENCH TO MACHINE LEARNING

13 - 14 JULY 2018



Neuroplasticity is the fundamental process 
that allows our brains to adapt to changes 
in the environment and is at the basis 
of learning and memory. In the 50’s, the 
neuropsychologist Donald O. Hebb described 
the fundamental principle of neural plasticity 
that stipulates that “neurons that fi re together, 
wire together”, recognising that brain 
connections undergo long-lasting changes in 
an activity-dependent manner leading to the 
well-established models of correlation-based 
synaptic plasticity. This model has contributed 
much to our current understanding of the 
physiology of neural plasticity and has fueled 
computational models used in artifi cial neural 
networks within machine learning without, 
however, achieving yet nature-like general 
intelligence and learning performances.

On one hand, it becomes increasingly 
clear that neuroplasticity can no longer 
be restricted to Hebb’s rules as research 
keeps discovering new mechanisms which 
involves the so-called “third factors” (e.g. 
dendritic computations, glia, network 
dynamics). However the functional and 
computational interpretation of these 

phenomena and their utilisation in machine 
learning remains to be explored. On the 
other hand, the advent of “deep networks” 
in machine learning has allowed us to 
model artifi cial neural networks that perform 
highly complex tasks (e.g. chess). But to 
date, none of these modeling approaches 
competes with general human or animal 
intelligence in terms of cost-e� ectiveness.

This workshop on Neuroplasticity will focus on 
the recent developments in neural plasticity 
and machine learning and their mutual 
inspiration. By bringing together international 
and national scientists, we hope to stimulate 
discussions and new interdisciplinary 
collaborations to bridge the gaps 
between experimental and computational 
approaches models of neuroplasticity.

Organisers:

Dr Andre Grüning, 
Department of Computer Science, 
FEPS, University of Surrey
Dr Julie Seibt, 
Surrey Sleep Research Centre, 
FHMS, University of Surrey
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8:30 am Registration and co� ee

9 am Welcome 
Derk-Jan Dijk, Head of the Surrey Sleep Research Centre, University of Surrey

9:10 am  Giorgos Kastellakis
Linking memories across time via excitability and synaptic tagging 

9:55 am  Conor Houghton
Anti-Hebbian learning with Hebbian spike timing dependent plasticity 

10:40 am Co� ee

11:10 am  Matthew Larkum
Looking for memory in L1 of the cortex 

12 pm  Lunch/Poster

2 pm  Tiina Manninen
Computational models of astrocytes and neuron-astrocyte interactions to 
promote understanding of synaptic function and dysfunction 

2:45 pm  Cyril Hanus
Local protein synthesis and atypical glycosylation diversify the properties of 
dendritic ion channels

3:30 pm Co� ee 

4 pm  Liam McDaid 
Biophysical Models of Astrocyte-Neuron Communications 

4:45 pm  Panel Discussion

7pm Workshop Dinner (Olivo, Guildford)

PROGRAMME
DAY 1 FRIDAY 13 JULY 
LECTURE THEATRE J

8:30 am Registration and co� ee

9 am  Keith Hengen
From neurons to networks: homeostatic principals of self-organization in the brain 

9:45 am  Mike Davies
Loihi: Putting the “Learning” in Machine Learning Processors 

10:30 am Co� ee

11 am  Katharina Wilmes
Interneuron circuits for top-down guided plasticity of sensory representations 

11:45 am  Short Talk:
Dominik Dold
From Euler-Lagrange to time-continuous error backpropagation in 
cortical microcircuits

12:10 pm  Lunch/Poster

1 pm Lunch

2:30 pm  Friedemann Zenke
Moving beyond random spiking neural networks by surrogate gradient descent 

3:15 pm  Brendon Watson
Sleep regulation of the distribution of cortical fi ring rates

4 pm Co� ee 

4:30 pm  Dave Lester
Learning and Plasticity on SpiNNaker

5:15 pm  Concluding remarks

DAY 2 SATURDAY 14 JULY 
LECTURE THEATRE J
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George Kastellakis  
Institute of Molecular Biology and Biotechnology 
(IMBB), Foundation for Research and Technology-
Hellas (FORTH), Heraklion, Crete, Greece
Email: gkastel@gmail.com

The question of how memories are organized 
in our brains is one of the biggest research 
directions in neuroscience, which has recently 
received renewed focus thanks to the advent 
of molecular techniques that allow the detailed 
monitoring of brain cells during memory tasks [1, 
2]. Memories are believed to be imprinted in the 
brain as engrams, which consist of specifi c, but 
not localized changes in the synapses between 
neurons, as well as changes in the neurons 
themselves. The molecular mechanisms that 
mediate these changes are active not only at 
the time when a memory is being acquired, 
but long after, allowing memories to interact 
with each other. During the process of engram 
formation and memory allocation, neurons and 
synapses are recruited to encode a specifi c 
memory. Recent experiments have shown that 
CREB activation determines the probability 
of neuronal recruitment in a memory engram 
via intrinsic excitability. In addition, memories 
that are temporally close have been found 
to be encoded in overlapping populations of 
neurons in CA1. Other experiments highlight 
the role of synaptic tagging and capture (STC) 
during memory allocation as a mechanism 
for binding together memories, but also for 
inducing competition between engrams for the 
capture of plasticity related proteins (PRPs). 

We have previously created computational 
models to probe these mechanisms of 
memory allocation and their possible roles in 
memory binding [3]. Our models incorporate 
the phenomenology of plasticity-related 
mechanisms that act at multiple spatial and 
temporal scales. Using these models we show 
how STC and excitability create temporal 
windows for the overlapping allocation of 
memories to populations. We fi nd that this 
e� ect is dependent on the locus of protein 
synthesis, and that somatic PRP synthesis 
favours population sparsity. When pairing 
strong and weak memories, memory allocation 
creates overlapping ensembles of neurons 
and synaptic clusters in dendrites which 
facilitates the linking of temporally related 
memories and the rescuing of weak memories. 

During memory allocation, synaptic turnover 
takes place, and it has been found that 
dendrites that exhibit higher synaptic turnover 
pre-learning have increased synaptic clustering 
post-learning [4]. We extended our plasticity 
model to incorporate the role of synaptic 
turnover during memory allocation. Our 
model corroborates the fi ndings of increased 
synaptic clustering and also predicts that it 
increases the population sparsity after memory 
encoding, indicating that synaptic turnover 
may a� ect memory discriminability. Finally, 
these fi ndings suggest roles for excitability 
and STC in learning which prime and facilitate 
learning in neural networks. We therefore 
examine the role of excitability in neural 
networks and the conditions under which 
excitability may facilitate or accelerate learning. 

Conor Houghton 
Faculty of Engineering, University of Bristol, UK
Email: conor.houghton@bristol.ac.uk 

Hebbian spike timing dependent plasticity 
strengthens the synapse from one neuron 

to another if the spikes from the first neuron 
tend to precede the spikes from the other. 
However, this doesn’t always lead to Hebbian 
learning; here two examples will be presented 
of anti-Hebbian learning from spike timing 
dependent plasticity.

Matthew Larkum 
Humboldt Universität zu Berlin, Berlin, Germany
Email: matthew.larkum@gmail.com

The hippocampus plays a vital role in 
transforming experience into long-term 
memories that are then stored in the cortex. 
However, the cellular mechanisms that 
designate how single neurons become part 
of a memory trace remain unknown. Part of 
the di�culty in addressing this question is the 
distributed nature of the cortical connectivity 
that results in the “engram” manifesting at 
synapses throughout the entire cortex. Here, 

I present recent evidence suggesting that 
connections arising in the hippocampus 
terminate (via intermediate areas) 
predominantly in layer 1 of the neocortex. This 
represents a nexus point for investigating 
memory. Such input must intermingle with 
long-range, feedback information and the 
highly electrogenic tuft dendrites of pyramidal 
neurons. This presentation will discuss the 
“Dendrite Hypothesis” that attempts to 
reconcile these facts, positing that all roads 
lead to layer 1. I will discuss how this may make 
way for a general theory of memory formation.

SPEAKER ABSTRACTS

LINKING MEMORIES ACROSS TIME VIA 
EXCITABILITY AND SYNAPTIC TAGGING 

ANTI-HEBBIAN LEARNING WITH HEBBIAN SPIKE 
TIMING DEPENDENT PLASTICITY

LOOKING FOR MEMORY IN LAYER 1 OF THE CORTEX
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1. Zhou Y, Won J, Karlsson MG, Zhou M, 
Rogerson T, Balaji J, Neve R, Poirazi P, Silva AJ. 
CREB regulates excitability and the allocation 
of memory to subsets of neurons in the 
amygdala. Nat Neurosci 12: 1438–1443, 2009.

2. Cai, D. J., Aharoni, D., Shuman, T., 
Silva, A. J., Shobe, J., Biane, J., Silva, A. 
J. (2016). A shared neural ensemble links 
distinct contextual memories encoded 
close in time. Nature, 534(7605)

3. Kastellakis et al, Linking memories across 
time via neuronal and dendritic overlaps in 
model neurons with active dendrites”, Cell 
Reports, 17 (6): 1491-1504, Nov 1st, 2016

4. Frank, A. C., Huang, S., Zhou, M., Gdalyahu, 
A., Kastellakis, G., Silva, T. K., ... & Silva, A. J. 
(2018). Hotspots of dendritic spine turnover 
facilitate clustered spine addition and learning 
and memory. Nature communications, 9(1), 422.
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Tiina Manninen
BioMediTech Institute and Faculty of 
Biomedical Sciences and Engineering, 
Tampere University of Technology, Finland, 
and Department of Neurobiology, Stanford 
University, USA
Email: tiina.manninen@tut.fi

Our understanding of astrocytes in brain 
function and dysfunction has increased 
substantially over the past two years. 
Although several experimental controversies 
exist, new roles of astrocytes have been 
proposed, including roles in synaptic 
development, plasticity, and learning [1–3]. 
We have addressed the roles by studying 
computational astrocyte and neuron-astrocyte 
models. We have characterized, categorized, 
and evaluated about a hundred models 
developed for single astrocytes, astrocyte 
networks, neuron-astrocyte synapses, and 
neuron-astrocyte networks [4]. We have 
also evaluated in detail some of the models 
by trying to implement them based on the 
knowledge in the original publications and 
reproduce the original results, as well as 
compare the models to each other [5–6]. 
Based on these studies, we found out that 
computational studies many times make 
somewhat naive assumptions and use data 
di�erent from astrocytes. New models 
have been developed without explaining 
how they diverge, if they diverge, from the 
previously published models and what new 
predictions the models are able to show on 
top of the previously published models [4]. 
Development of previously published models, 
as well as the reproducibility, replicability, and 
comparability issues has been made di�cult 

and time-consuming by not providing all the 
model details in the original publications and 
not providing the model implementations 
in the available model repositories [4–6]. 
We especially want to underline the use of 
common description formats when defining 
models in the publications and description 
languages when providing models in model 
repositories. Using our evaluation studies 
of astrocyte models as guidelines, we have 
developed neuron-astrocyte synapse 
models for cortical synapses [7]. In the 
future, we attempt to construct both detailed 
and reduced models of neuronastrocyte 
interactions for di�erent brain areas, 
which will hopefully provide additional 
clarifications to the controversies presented 
in di�erent experimental studies [1–3]. In 
this talk, I will present the state-of-the-art in 
modeling astrocyte functions, discuss the 
reproducibility and replicability issues related 
to computational astrocyte models, and outline 
future needs to assist the understanding of 
how astrocytes may contribute to di�erent 
synaptic functions and dysfunctions.

References:

1. Bazargani N, Attwell D: Astrocyte calcium 
signaling: the third wave. Nat Neurosci 
19(2):182-189, 2016.

2. Fiacco TA, McCarthy KD: Multiple lines of 
evidence indicate that gliotransmission does 
not occur under physiological conditions. J 
Neurosci 38(1):3-13, 2018.

3. Savtchouk I, Volterra A: Gliotransmission: 
beyond black-and-white. J Neurosci 38(1):14-
25, 2018.

Cyril Hanus
Center for Psychiatry and Neurosciences, 
INSERM U894, Paris, France
Email: cyril.hanus@inserm.fr

For us to learn and form memories, our 
neurons must selectively modify the 
composition and properties of a few 
selected synapses among the tens of 
thousands synapses that they maintain with 
other neurons. To achieve this daunting 
task, neurons have evolved novel means 
to regulate and exploit the core cellular 
machinery and, for example, locally 
synthesize synaptic receptors to directly 
functionalize specific synapses during 
learning and memory formation.

Over the past ten years, we have 
characterized multiple mechanisms that 
enable neurons to locally process membrane 
and secreted proteins and tra�c them to the 
specific segments of dendrites and synapses 
where they are needed. Intriguingly in doing 
so, we found that while neuronal dendrites 
contain all the machinery that is needed 
for the biogenesis of secretory proteins, 

dendrites are devoid of generic Golgi 
membranes. Because one of the key function 
of the Golgi apparatus is to glycosylate 
proteins - i.e. to modify the chemical 
composition of these proteins by addition of 
complex sugars - this led us to investigate 
how the unique organization of the neuronal 
secretory pathway impacts N-glycosylation 
and hence the dynamics and functional 
properties of synaptic proteins.

We hence discovered that, as a result of 
local protein synthesis and Golgi bypass, 
surface expressed neurotransmitter 
receptors and virtually all the key proteins of 
the neuronal surface display N-glycosylation 
profiles that are typically only found on 
immature intracellular proteins in the 
endoplasmic reticulum in other cell types. 
This atypical N-glycosylation regulates 
the turnover and biophysical properties of 
synaptic receptors, revealing a previously 
unrecognized mechanism that controls the 
sensing properties and plasticity of the 
neuronal membrane.

COMPUTATIONAL MODELS OF ASTROCYTES AND NEURON-
ASTROCYTE INTERACTIONS TO PROMOTE UNDERSTANDING 
OF SYNAPTIC FUNCTION AND DYSFUNCTION

LOCAL PROTEIN SYNTHESIS AND ATYPICAL GLYCOSYLATION 
DIVERSIFY THE PROPERTIES OF DENDRITIC ION CHANNELS
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the turnover and biophysical properties of 
synaptic receptors, revealing a previously 

4. Manninen T, Havela R, LinneM-L: 
Computational models for calcium-mediated 
astrocyte functions. Front Comput Neurosci 
12:14, 2018.

5. Manninen T, Havela R, Linne M-L: 
Reproducibility and comparability of 
computational models for astrocyte calcium 
excitability. Front Neuroinform 11:11, 2017.

6. Manninen T, A´cimovi´c J, Havela R, 
Teppola H, LinneM-L: Challenges in 
reproducibility, replicability, and comparability 
of computational models and tools for neuronal 

and glial networks, cells, and subcellular 
structures. Front Neuroinform 12:20, 2018.

7. Havela R, Manninen T, Saudargiene A, Linne 
M-L:Modeling neuron-astrocyte interactions: 
towards understanding synaptic plasticity 
and learning in the brain.13th International 
Conference on Intelligent Computing (ICIC 
2017) published in Intelligent Computing 
Theories and Application, Part II, Lecture Notes 
in Computer Science 10362, eds. D-S Huang et 
al., 157-168, Liverpool, UK, 07.-10.08.2017.
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Input specifi c modulation of synaptic 
strength (e.g. Hebbian plasticity) is 
severely destabilizing to complex neural 
networks, especially those with recurrent 
connectivity. This is di�  cult to reconcile 
with the impressive stability of neural 
function across the lifetime of an organism. 
While homeostatic mechanisms have been 
proposed stabilize the activity of single 

neurons, it is unclear how the complex 
interactions of many neurons, i.e. network 
dynamics, are maintained stably. The 
Hengen Lab addresses questions of active 
self-organization, stable function, and the 
relationship between neural dynamics and 
stable behavior on ethologically relevant 
timescales of weeks to months. The lab 
relies upon high density recordings of many 
individual neurons in freely behaving animals 
to examine dynamics at the micro, meso, and 
macro scale. This work necessarily involves 
machine learning, synthetic networks, and 
theoretical approaches.

FROM NEURONS TO NETWORKS: HOMEOSTATIC 
PRINCIPALS OF SELF-ORGANIZATION IN THE BRAIN

Liam McDaid   
School of Computing, computer Science 
Research Institute, Ulster University, Ireland
Email: lj.mcdaid@ulster.ac.uk

Astrocytes, the most abundant type of glial 
cell in the brain, are important contributors 
in metabolic maintenance and are also 
involved in neuronal activity and information 
processing in the nervous systems. Current 
research has shown that they have a large 
number of receptors which suggests that 
astrocytes exchange information with 
neurons thereby influencing their behaviour. 
Approximately 50% of synapses have an 
intimate connection between astrocytes 
and neurons and consequently synapses 

exchange signals at three terminals, hence 
the name tripartite synapse. Astrocytes have 
been found to possess binding sites for 
endocannabinoids and are also reportedly 
involved in the uptake of Glutamate and 
Potassium. This talk will present models 
that capture the biophysical mechanisms 
that underpin the coordination of synaptic 
activity with many homeostatic reactions of 
astrocytes and additionally propose a new 
mechanism that could explain the formation 
of Sodium and Potassium microdomains at 
the perisynaptic cradle. The formation of 
potassium microdomains will be shown to 
point to a new mechanism for Potassium 
clearance from the synaptic cleft. 

Mike Davies   
Neuromorphic Computing Lab, Intel Labs, Intel 
Corporation, USA
Email: mike.davies@intel.com

In September of 2017, Intel announced its 
Loihi neuromorphic research chip. This 
novel processor implements a microcode-
programmable learning architecture 
supporting a wide range of neuroplasticity 
mechanisms under study at the forefront of 

computational neuroscience.  By maintaining 
the same locality of information processing 
and integrated memory-compute architecture 
as the brain, Loihi promises to provide highly 
e�cient and scalable learning performance 
for supervised, unsupervised, reinforcement-
based, and one-shot paradigms.  This talk 
provides an overview of the Loihi architecture 
and preliminary results towards our vision of 
low power and real-time on-chip learning.

Katharina Wilmes   
Faculty of Engineering, Department of 
Bioengineering, Imperial College London, UK
Email: k.wilmes@imperial.ac.uk

Inhibitory interneurons form canonical circuit 
motifs across brain areas and have been 
repeatedly shown to play a role in learning 
and memory. There are several ways in 
which interneurons could be involved in 
learning by shaping synaptic changes. In 
my talk, I will present recent work on how 
interneuron circuit structure could guide 
synaptic plasticity in the context of stimulus-
reward association learning: Humans and 
animals are remarkable at attending to stimuli 
that predict rewards. While the underlying 
neural mechanisms are unknown, it has been 
shown that rewards influence plasticity of 
sensory representations in early sensory 
areas (Poort et al. 2015, Goldstein et al. 2013, 
Khan et al. 2018).  Hence, top-down reward 
signals can modulate plasticity in local cortical 
microcircuits. However, synaptic changes 
require time, but rewards are usually limited 
in time. Because the two happen on di�erent 
time scales, it is unclear how reward signals 

interact with long-term synaptic changes. We 
hypothesised that interneuron circuit, which 
are key players during learning and memory 
(e.g. Letzkus et al. 2011, Fu et al. 2014), bridge 
the timescales. We hence investigated how 
temporary top-down modulation by rewards 
can interact with local excitatory and inhibitory 
plasticity to induce long-lasting changes in 
sensory circuitry. We constructed a model of 
layer 2/3 mouse visual cortex consisting of 
excitatory pyramidal neurons, somatostatin 
(SST)-positive, parvalbumin (PV)-positive and 
vasoactive intestinal peptide (VIP)-expressing 
interneuron types. In our model, a connectivity 
structure arises between interneurons during 
the reward phase. After the reward phase, this 
structure disinhibits pyramidal neurons during 
the previously rewarded stimulus. This enables 
excitatory connectivity to refine after the 
reward phase, which results in an increased 
representation of the rewarded stimulus. In 
summary, I will demonstrate how interneuron 
networks can store information about relevant 
stimuli to instruct long-term changes in 
excitatory connectivity beyond the presence of 
reward signals.

BIOPHYSICAL MODELS OF ASTROCYTE-NEURON COMMUNICATIONS LOIHI: PUTTING THE “LEARNING” IN 
MACHINE LEARNING PROCESSORS

INTERNEURON CIRCUITS FOR TOP-DOWN GUIDED 
PLASTICITY OF SENSORY REPRESENTATIONS
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How synaptic connections in the cortex are 
locally modified to learn to jointly solve complex 
tasks like playing an instrument is still an open 
question commonly known as the “credit 
assignment problem”. Recently, it has been 
proposed that the brain may approximate 
the widely-used backpropagation algorithm 
(“backprop”; Rumelhart et al. 1986) during 
learning (Guerguiev et al. 2017, Scellier et al. 
2017, Sacramento et al. 2017) which is the key 
ingredient behind the recent Deep Learning 
revolution (LeCun et. al 2015). However, such 
models either rely on the neuronal dynamics 
being in a stationary state before synaptic 
plasticity is induced or learning is separated into 
two distinct phases. This in turn prevents learning 
from sensory input streams with time-continuous 
structure. Here we present a novel theoretical 
approach that mitigates these problems.

Our approach is inspired by the predictive 
coding paradigm proposed in earlier work (Rao 
and Ballard 1999, Scellier et al. 2017), in which 
neuronal and synaptic dynamics are defined 
as gradient descent on an energy function. We 
assume instead a least-action principle, from 
which the dynamics follow as Euler-Lagrange 
equations of an energy function with respect 
to the discounted future neuronal voltage, i.e., 
dynamics are derived based on the predicted 
future neuronal activity rather than the 
instantaneous activity (“Prospective Coding”, 

Brea et al. 2016). The resulting neuronal dynamics 
can be interpreted as multi-compartment with 
Hodgkin-Huxley-like dynamics, allowing neurons 
to phase-advance their somatic input and hence 
undo temporal delays introduced by somatic and 
dendritic low-pass filtering (Fig. 1A).

Similar to previous work (Sacramento et al. 
2017), synaptic plasticity in our model is driven 
by a local prediction error at distal dendrites 
that results from the discrepancy between 
bottom-up activities and top-down feedback 
(Fig. 1B). The prediction errors are calculated 
locally by lateral inhibitory interneurons, which 
try to cancel the top-down feedback. If part of 
the top-down feedback cannot be explained 
away by the lateral interneurons, this results in 
a non-zero prediction error at distal dendrites, 
driving plasticity on bottom-up connections at 
basal dendrites of the same neuron to reduce 
the prediction error to zero. The coupled 
neuronal and synaptic dynamics can be shown 
to approximate time-continuous backprop in 
recurrent cortical microcircuits. To demonstrate 
the learning capabilities, we trained networks 
to recognize handwritten digits from the 
MNIST dataset using a setup with (i) coupled 
forward and interneuron weights, reaching 
97.64% classification rate (Fig. 1C), and (ii) plastic 
interneuron weights, currently reaching 
95.44% (Fig. 1D).

Thus, our theory provides a principled view 
of neuronal dynamics and plasticity rules, 
further narrowing the gap between biophysical 
plasticity rules and abstract learning algorithms 
while being consistent with features of cortical 
microcircuits such as Hodgkin-Huxley-like 
mechanisms, multiple compartments and cell-
specific inhibition.

[1] Rumelhart, D. E., Hinton, G. E., & Williams, R. 

FROM EULER-LAGRANGE TO TIME-CONTINUOUS ERROR 
BACKPROPAGATION IN CORTICAL MICROCIRCUITS

Friedeman Zenke   
Centre for Neural Circuits and Behaviour, 
University of Oxford, UK
Email: friedemann.zenke@cncb.ox.ac.uk

Computation in the brain is in large part 
performed by spiking neural networks. 
However, currently we neither understand 
how biological spiking neural circuits compute 
and nor how to instantiate such capabilities in 
artificial spiking network models. In my talk I 
will focus on training recurrent and multi-layer 
and recurrent artificial spiking neural networks 
by minimizing cost functions. Crucially, 

in the spiking setting standard gradient-
based optimization methods fail because 
gradients vanish when propagated through a 
deterministic spiking threshold. To overcome 
this limitation, I will introduce the “SuperSpike 
trick” and use it to derive surrogate gradients. 
These approximate gradients can then be 
used to train spiking networks to perform 
nonlinear computations in the temporal 
domain. Further, I will demonstrate the 
e�ectiveness of this approach on benchmarks 
and discuss biologically plausible reductions 
of the algorithm.

MOVING BEYOND RANDOM SPIKING NEURAL 
NETWORKS BY SURROGATE GRADIENT DESCENT

J. (1986). Learning representations by back-
propagating errors. Nature, 323(6088), 533.

[2] Guerguiev, J., Lillicrap, T. P., & Richards, B. A. 
(2017). Towards deep learning with segregated 
dendrites. eLife, 6. [3] Scellier, B., & Bengio, 
Y. (2017). Equilibrium propagation: Bridging 
the gap between energy-based models and 
backpropagation. Frontiers in computational 
neuroscience, 11, 24.

[4] Sacramento, J., Costa, R. P., Bengio, Y.,& 
Senn, W. (2017). Dendritic error backpropagation 

in deep cortical microcircuits. arXiv preprint 
arXiv:1801.00062.

[5] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep 
learning. Nature, 521(7553), 436.

[6] Rao, R. P., & Ballard, D. H. (1999). Predictive 
coding in the visual cortex: a functional 
interpretation of some extraclassical receptive-
field e�ects. Nature neuroscience, 2(1), 79.

[7] Brea, J., Gaál, A. T., Urbanczik, R., & Senn, W. 
(2016). Prospective coding by spiking neurons. 
PLoS computational biology, 12(6), e1005003.
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SpiNNaker was originally designed to support 
fixed connection networks of LIF neurons with 
a fan-in/fan-out of just 1,000. More recent work 
has shown that these limitations can be traded 
o� against one another and that fan-in/outs of 

10,000 are possible, that very sparse networks 
can be handled, and finally that many di�erent 
plasticity mechanisms can be successfully 
implemented. I will be discussing the various 
models that I’m aware of, that have already 
been implemented, and I am confident that as 
a result of this talk I will discover more models 
that have been implemented. Hopefully, as a 
result of this, we can put together a discussion 
document reviewing these models.

LEARNING AND PLASTICITY ON SPINNAKER

Brendon Watson   
Department of Psychiatry, University of 
Michigan, USA
Email: brendonw@med.umich.edu

The brain travels through varying oscillatory 
states as animal behavior varies, including 
and especially changes in sleep-wake status.  
Sleep is thought to mediate both mnemonic 
and homeostatic functions. However, the 
mechanism by which this brain state can 
simultaneously implement the ‘selective’ 
plasticity needed to consolidate novel memory 
traces and the ‘general’ plasticity necessary 
to maintain a well-functioning neuronal system 

is unclear. Recent findings show that both of 
these functions di�erentially a�ect neurons 
based on their intrinsic firing rate, a ubiquitous 
neuronal heterogeneity. Furthermore, they 
are both implemented by the NREM slow 
oscillation, which also distinguishes neurons 
based on firing rate during sequential activity 
at the DOWN→UP transition. These findings 
suggest a mechanism by which spiking activity 
during the slow oscillation acts to maintain 
network statistics that promote a skewed 
distribution of neuronal firing rates, and 
perturbation of that activity by hippocampal 
replay acts to integrate new memory traces 
into the existing cortical network.

NEURAL OSCILLATIONS, BRAIN STATES AND FIRING DYNAMICS
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Focused attention meditation (FAM) practices 
are cognitive control exercises where 
meditators learn to maintain focus and attention 
in the face of distracting stimuli. Previous 
studies have shown that FAM is both activating 
and causing plastic changes to the mesolimbic 
dopamine system and some of its target 
structures, particularly the anterior cingulate 
cortex (ACC) and striatum. Feedback based 
learning also depends on these systems and 

is known to be modulated by tonic dopamine 
levels. Capitalizing on previous findings that 
FAM practices causes dopamine release, the 
present study shows that FAM practitioners 
display a more positive feedback learning bias 
(FLB) than matched controls on a probabilistic 
learning task. Furthermore, they have smaller 
feedback related negativity (FRN) than 
controls. Crucially, these e�ects scale with FAM 
experience for FRN. A possible explanation for 
this e�ect is that FAM practice causes persistent 
increases in tonic dopamine levels over time 
which results in the observed changes in 
feedback processing

POSTER ABSTRACTS

DOES MEDITATION CHANGE HOW WE PROCESS FEEDBACK
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When presented with ambiguous sensory input, 
humans are often able to consider di� erent, 
mutually incompatible scenarios that are at least 
partly consistent with their perception. The 
ability of making such Bayesian judgements 
has been an interesting topic both in machine 
learning and biology. Generative neural networks 
have been widely applied to various inference 
tasks, text and video generation (Rezende et 
al., 2014; Vinyals et al., 2015; Vondrick et al., 
2016). Experimental evidence suggests a similar 
computational interpretation of ongoing activity 
in the brain (Fiser et al., 2010; Hindy et al., 2016; 
Jezeket al., 2011).

Under the generic assumption of contrastive 
Hebbian learning, traditional probability based 
models such as Boltzmann machines often 
attain multimodal energy landscapes with deep 
attractor basins separated by high energy 
barriers. This causes the network to often 
become trapped in local minima, greatly reducing 
the diversity of produced patterns (Fig.1 D).

Classical algorithms solve this problem by 
employing annealing or tempering techniques 
(Kirkpatrick et al., 1983; Salakhutdinov, 2010), 
which fl atten the energy landscape to help the 
network jump out of local modes (Fig.1 A). Based 
on previous works on spike-based generative 
models (Petrovici et al., 2015, 2016; Probst et 
al., 2015), we demonstrate that this principle 

can be implemented in spiking neural networks 
with neural oscillations. Here, we use networks 
with leaky integrate-and-fi re neurons to learn 
and reproduce handwritten digits (MNIST). We 
show that an appropriate modulation of the 
background Poisson noise leads to a rescaling 
of the energy landscape analogous to simulated 
tempering. A mapping between the temperature 
defi ned for networks with abstract units and 
the Poisson noise rate in spiking networks was 
established. A rate variation scheme based on 
this principle facilitates the network to jump 
out of local minima and mix quickly between 
di� erent modes, thereby converging faster 
towards the target distribution (Fig.1 B). We 
thereby suggest a functional role of the 
macroscopic neural oscillations observed in 
the cortex in modifying a network’s attractor 
landscape for faster Bayesian computation.

While such tempering approaches are a well-
established technique, they usually come at a 
signifi cantly increased computational cost and 
require global state updates. In the second part 
of our study, we show that similar results can 
be achieved in spiking networks endowed with 
short-term plasticity (STP), which improves mixing 
by changing the active local attractor (Leng et 
al., 2017) (Fig.1 A, C).We study a combination of 
potentiation and depression which fi rst deepens 
the local minimum, creating a high-contrast 
image, followed by a rise that pushes the 
network to jump out of the local attractor (Fig.1 C). 
Additionally, we discuss how these networks can 
even outperform tempering-based approaches 
when the training data is imbalanced (Fig.1 D). 
We thereby uncover a powerful computational 
property of biologically inspired, local, spike-
triggered synaptic dynamics based simply on a 
limited pool of synaptic resources, which enables 
them to deal with complex sensory data.

BIOLOGICAL SOLUTIONS TO THE MIXING PROBLEM

Figure 1: (A) To facilitate mixing, tempering 
methods globally rescale the energy landscape 
with a temperature (top). In contrast, STP can be 
viewed as only modulating the energy landscape 
locally, thereby only a� ecting the currently 
active attractor (bottom). (B) The rate variation 
scheme of the background noise (with balanced 
excitation and inhibition) follows the shape of 
a sine wave, which is mapped to the inverse 
temperature (β) domain. An increasing rate 
decreases the slope of the activation function of 
each individual neuron, and fl attens the global 
energy landscape. (C) MNIST digits generated by 
a spiking network exposed to oscillatory noise 
input: The network forms clearly recognizable 
digits in the minima, while using the high-noise 
maxima to jump between di� erent modes. (D) 
Left: Renewing synapses (top) would keep the 
average interaction between pairs of neurons 
constant, while plastic synapses (bottom) with 
appropriate Tsodyks-Markram (Fuhrmann et al., 
2002) parameters fi rst strengthen, then weaken 
the e� ective interaction. This causes a local 
change in the energy landscape, fi rst deepening 
the energy trough and sharpening the produced 
image, followed by a local fl attening of the energy 

landscape which pushes the network state into 
a di� erent mode. Middle and right: tSNE (Maaten 
and Hinton, 2008) plots of images produced by 
Gibbs sampling and a spiking neural network 
with STP over 1800 consecutive samples. For 
every 6th of these samples, an output image is 
shown. Consecutive images are connected by 
grey lines. Di� erent colours represent di� erent 
image classes. Note that tSNE inherently 
normalizes the area of the 2D projection; the 
volume of phase space covered by the Gibbs 
chain is, in fact, much smaller than the one 
covered by the spiking network. (E) Comparison 
of Gibbs and AST samplers with STP-endowed 
spiking networks for imbalanced training data 
(820 digits of class ”1” and 45 from the ”0”, ”2”, ”3” 
and ”8” classes). Left: Histogram of relative time 
spent in di� erent modes. Right: Mode evolution 
over consecutive samples. The STP-induced 
weakening of active attractors balances out their 
activity, thereby negating the inherent imbalance 
induced by the training data and leading to fast 
mixing between di� erent modes. In contrast, 
traditional sampling algorithms are trapped in the 
majority mode.
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Supraoptic (SON) and paraventricular 
(PVN) nuclei are part of the hypothalamic 
system, they constitute the main source 
for vasopressin (AVP) and they represent 
obvious examples of activity-dependent 
neuroglial plasticity. Under sever conditions of 
dehydration, AVP neurons, release AVP which 
stimulates the expression of the kidney water 
channel named aquaporines type 2 (AQP-2), 
necessary for the reabsorption of water and 
reduces signifi cantly the dieresis. The aim 
of the present investigation is to clarify the 
underlying central and peripheral mechanisms 
allowing the desert rodent Meriones shawi 

to regulate its body water content and resist 
to dehydration. Thus, GFAP, AVP and AQP-2 
immunoreactivities were used successively 
as activation indicators of astrocytes, 
AVP neurons and medulla kidney AQP-2. 
Hence, we studied the immunoreactivity in 
various hydration states: water ad libitum, 
one and three months of water deprivation. 
Our results showed that dehydration of 
Meriones induced a signifi cant decrease 
of GFAP accompanied by a signifi cant 
increase of AVP immunoreactivities, the latter 
concerns both cell bodies and fi bers in the 
same hypothalamic nuclei SON and PVN. 
Peripherally, a signifi cant increase of AQP-2 
immunoreactivity in the medullar part of 
Meriones kidneys was simultaneously seen. 
These results show that both astrocytes and 
AVP neurons display a remarkable structural 
and physiological plasticity on both SON and 
PVN with an excessive release of AVP, which 
acts probably on AQP-2 allowing probably 
to Meriones a great ability to water retention. 
These various changes at both central and 
peripheral levels might be the basis of control 
of body water homeostasis, providing to M. 
shawi a strong resistance against dehydration.

M Spiteri1, S.P. Knowler2, K. Wells1, C. 
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Canine Chiari malformation (CM) is prevalent 
in brachycephalic toy breeds including 
the Cavalier King Charles spaniel (CKCS). 
Although some dogs are asymptomatic, CM 
can be associated with pain and secondary 
syringomyelia (SM). Morphometric studies on 
traditional MRI can distinguish between clinical 
groups. However is not easy to translate 
fi ndings from research to clinical practice.

The aim of this study was to extract imaging 
markers from MRI in relation to CM associated 
pain (CM pain) and SM in adult CKCS dogs. 
This study was split into two analyses: 
comparing a CM pain class to asymptomatic 
CM controls, and comparing a symptomatic 
SM class to controls. The dogs were 
diagnosed based on clinical signs and MRI. A 
midline sagittal MRI of the head and neck of a 
CKCS from the control group was chosen as 

a reference. The midline sagittal MR images 
of 77 dogs were mapped onto the reference 
MRI using DEMONS (non-linear) image 
registration, producing a 2D deformation 
map for each case. For each pixel, direction 
and magnitude of the mapping deformation 
were computed. Potential biomarkers were 
identifi ed amongst these descriptors using 
a machine learning approach consisting 
of a feature selection algorithm, to identify 
candidate markers of CM pain or SM, and a 
kernelised Support Vector Machine classifi er, 
to analyse the ability of these to successfully 
separate controls and clinical cases. This 
resulted in an area under the curve (AUC) 
of 81.51 for CM pain and 86.10 for SM. The 
analysis identifi ed 5 markers for CM pain 
(in the regions of the nasopharynx, soft 
palate, caudal nucleus, hypothalamus and 
4th ventricle) and 5 markers for SM (in the 
regions of soft and hard palate interface x 
2, soft palate, trochlear nucleus, and corpus 
callosum) (fi gure 1). 

Identifi cation of biomarkers can be used to 
develop an objective tool for diagnosis. 

Figure 1: Identifi ed markers for (A) CM pain 
and (B) Syringomyelia.

DEHYDRATION INDUCED NEUROGLIAL PLASTICITY BETWEEN 
VASOPRESSIN NEURONS AND ASTROCYTIC PROCESSES IN 
SUPRAOPTIC AND PARAVENTRICULAR NUCLEI OF MERIONES 
SHAWI HYPOTHALAMUS AND EXHIBITED HIGH EXPRESSION 
OF THE KIDNEY WATER CHANNEL: AQUAPORINES-2

MRI BIOMARKERS FOR CANINE CHIARI MALFORMATION 
ASSOCIATED PAIN AND SYRINGOMYELIA
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During sleep, structural and functional 
changes of dendrites have been proposed 
to serve as the substrate of memory storage 
in the cortex (1). Dendrites of layer 5 neurons 
(L5 dendrites) integrate countless synaptic 
inputs and, owing to their intrinsic properties, 
can express localized synaptic plasticity 
mechanisms (2). We have previously shown 
that, during sleep, calcium (Ca2+) activity of L5 
dendrites is modulated by specifi c neuronal 
oscillations during non-rapid-eye movement 
(NREM) sleep, called spindles (3). This work 
provided a novel link between the previously 
observed increase in spindles after learning 
and the requirement for dendritic activation 
during NREM sleep for memory consolidation 
(4). However, rapid-eyemovement (REM) sleep 
also seems to be important for experience-
dependent structural plasticity and Ca2+ 
increase in L5 dendrites (5). In in this study 
we aim to gain a better understanding of 
how sleep stages, neuronal oscillations and 
activity of di� erent dendritic compartments 
interact to support sleep-dependent plasticity.

We used two-photon Ca2+ imaging of L5 
somata and apical dendrites, specifi cally 

the apical tuft and apical shaft, across active 
wake [AW], quiet wake [QW], NREM and REM 
sleep. Given the pivotal role of precisely 
timed dendritic inhibition in plasticity, we 
also imaged somatostatin (SST) interneurons 
that are known to target apical dendrites. 
Combining Cre-dependent expression of 
GCaMP6s in L5 (Rbp4-Cre, n = 4) and SST 
transgenic mice (SST-Cre, n = 4), we imaged a 
total of 706 L5 dendrites, 125 L5 somata and 
88 SST interneurons. To assess the infl uence 
of experience, we compared Ca2+ activity 
during a baseline period and after three hours 
of exposure to an enriched environment (EE) 
the next day. EE exposure is known to trigger 
robust cortical plasticity during sleep. Both 
imaging sessions were performed at the 
beginning of the light phase (i.e. 8am) when 
sleep requirement is maximal.

Preliminary results revealed that dendrites 
and somata (SST and L5) exhibit large 
variability in Ca2+ activity during AW and REM 
sleep, compared to QW and NREM sleep. 
On average, however, there is a decrease 
in activity from AW to QW to NREM sleep for 
dendrites and somata. Interestingly, during 
REM sleep, SST and L5 somata further 
decrease their activity, while dendritic Ca2+ 
showed a marked increase. EE exposure 
had a signifi cant e� ect on Ca2+ activity in 
both SST neurons and dendrites. Across 
states, dendrites increased their activity 
most during NREM and REM sleep, while 
SST neurons showed the most signifi cant 
increase during wakefulness (AW and QW). In 
contrast to dendrites, SST neurons decrease 
their activity during NREM following EE, 
supporting the disinhibition of dendrites 
following experience during that sleep stage. 
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Sleep appears to be a universally conserved 
phenomenon among the animal kingdom 
but whether this striking evolutionary 
conservation underlies a universally 
conserved vital function is still a very open 
question. Using novel technologies, we 
conducted a high-throughput, detailed 

analysis of sleep in the fruit fl y Drosophila 
melanogaster and performed large scale 
experiments of chronic sleep restriction. Our 
results show that some wild type female fl ies 
are virtually sleepless in baseline conditions 
and that, contrary to expectations, complete 
sleep restriction is not a lethal treatment 
in Drosophila. Based on these results, we 
propose two new models for sleep function 
and conclude that, at the very least, a large 
component of sleep may not serve any strictly 
vital function.

Further, we investigated the infl uence of 
sleep oscillations on synchronization of Ca2+ 
activity. Preliminary results suggested that 
sigma oscillations (i.e. spindles) are correlated 
with synchronization of both dendrites and 
SST neurons during NREM, with a di� erential 
e� ect across the dendritic tree. 

So far, our results confi rm previous results 
showing a decrease in activity in SST neurons 
across brain states (6) and an experience-
dependent increase in dendritic activity 
during REM sleep (5). Noteworthy, however, 
was the remarkable dichotomy of L5 dendritic 
and somatic activity during REM sleep. This is 
particularly relevant in light of recent fi ndings 
highlighting the role of REM sleep in synaptic 
plasticity (5). Further analysis will help us to 
better understand how dendritic activity is 
regulated across sleep states and by sleep 
specifi c oscillations. 
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