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INTRODUCTION

Scientists and engineers enhance their 
understanding of the world by fitting 
models to data. The model parameters 
are however inherently uncertain due 
to observational errors in the data, 
and structural uncertainties in the 
model. Bayesian sampling methods 
offer an approach to quantifying the 
uncertainty in model parameters by 
inferring the full posterior probability 
distribution of the model as a function 
of its parameters. In static systems, 
the models are usually quick to run for 
each set of parameters. Real systems 
such as interacting galaxies, the 
weather, or flu epidemics often change 
rapidly with time, requiring more 
complex models. Applying Bayesian 
methods to these problems can be 
computationally prohibitive.

A virtual one-day workshop that ran on 
Wednesday 14th July, brought together 
30+ stakeholders in both research 
and industry to facilitate knowledge 
exchange in the quantification of 
uncertainty in complex data-fitting 
problems and methods for Bayesian 
sampling and optimization. 

There was a combination of 
pedalogical talks and research talks in 
two sessions:

1. Complex data-fitting problems and
uncertainty analysis

2. Bayesian sampling and
optimization

Three keynote speakers gave the 
pedagogical talks: 

1. Introduction to uncertainty and
sequential data assimilation (Dr
Naratip Santitissadeekorn from the
University of Surrey)

2. The essentials of Markov Chain
Monte Carlo (Dr Alex Shestopaloff
from The Alan Turing Institute and
Queen Mary University)

3. An Introduction to Nested Sampling
(Dr Josh Speagle from Harvard
University)

Here are the conference proceedings 
from the workshop.

VIDEO RECORDINGS
Video recordings of the presentations 
can be accessed via Youtube.
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UNCERTAINTY QUANTIFICATION

From the Bayesian viewpoint, uncertainty is subjective, which typically arises from 
lack of complete knowledge of the phenomenon we wish to understand. The essence 
of Bayesian uncertainty quantification is to use a probability distribution to describe 
our uncertainty, which will be reassigned a new probability distribution in light of 
available evidences or data. The basic Bayes’s rule can be applied to assimilate the 
available data for the probability reassignment. In the next section, we will consider a 
recursive method for data assimilation.

SEQUENTIAL DATA ASSIMILATION (DA)

The Sequential Data Assimilation uses the Bayes’s rule to recursively incorporate 
information contained in a data stream yk  to update uncertainty of unobserved state 
xk, where k is a discrete time step. The main elements of this problem is the state-
space model of x and y:

	 Hidden-Markov model:

	 Observation model:

An example of a state-space model is the random walk model:

Based on these assumptions, a recursive learning algorithm can be developed to 
compute the probability density p(xk | y1:k), where y1:k is the information up to time step 
k. Some key assumptions are required to enable a recursive scheme:

•	 Markov property of states (M)

•	 Conditional independence of observations (C)

Narat ip Sant i t issadeekorn
INTRODUCTION TO UNCERTAINTY 
AND SEQUENTIAL DATA ASSIMILATION

xk = xk−1 + qk,	 qk ∼ N (0, Q) → p (xk | xk−1) = N (xk; xk−1, Q)

yk = Hxk + rk,	    rk ∼ N (0, R) → p (yk | xk) = N (yk; Hxk, R)

xk ∼ p (xk | xk−1)

yk ∼ p (yk | xk)

p ( xk | x1:k−1 , y1:k−1 ) = p ( xk | xk−1 )   p ( x0:T ) = p (x0)    p ( xk | xk−1 )
T

k=1

    p ( yk | x1:k , y1:k−1 ) = p ( yk | xk )   p ( x1:T | x0:T ) =     p ( yk | xk )
T

k=1

  continued

The sequential DA performs two main steps:

1.	 Prediction step: Given p ( xk−1 | y1:k−1 ), we can apply the Chapman-Kolomogrov 
equation and use (M) to show that

2.	 Update step: Given the observation yk we can use (C) to show that

Notice that this scheme starts with p ( xk−1 | y1:k−1 ) and ends with p ( xk | y1:k ); hence, 
it provides a way to construct a recursive inference algorithm. Both of the above 
steps can be difficult to implement. Some special cases have an explicit formulation 
(e.g. the Celebrated Kalman filtering where the normal model of both p ( xk | y1:k−1 ) 
and p ( yk | xk ) makes p ( xk | y1:k ) a normal distribution as well. In general cases, the 
implementation of the above two steps use a Monte Carlo approach. The important 
sampling (IS) is used to develop a sequential DA algorithm, called particle filter (PF). 
Given { xk−1, . . . , xk−1  } ∼ p ( xk−1 | y1:k−1 ), the PF aims to construct { xk , . . . , xk  } ∼ 
p ( xk | y1:k ). Suppose that we have a set of particles xk−1 for j = 1, . . . ,m. At time k, the 
PF will carry out the following steps:

1.	 Draw xk  from a trial distribution g ( xk | xk−1 ).

2.	 Compute the incremental weight

3.	 New weight:

It is clear that the above algorithm is recursive. In practice, it further requires a 
resampling to combat the weight degeneracy problem where only a small number 
of particles has a significant weights. The PF suffers from the curse of dimensionality 
and the resolution will require a creative design of the trial distribution, which will 
be problem-dependent. In addition, many problems in practice include unknown 
(fixed) parameters θ. Since xk depends on θ at all time step, the joint state [xk, ] is not 
Markovian and PF cannot be directly applied. To circumvent this issue, we may allow 
the parameters to move and write an augmented state [xk, θk], where θk = θk−1 + η 
for some stochastic variable η and let xk to depend only on θk so that the PF can be 
applied.

p ( xk | y1:k− 1) =    p ( xk  | xk−1 ) p ( xk−1 | y1:k−1 ) dxk−1

p (xk | y1:k)        p (yk | xk) p (xk | y1:k−1) 

(1) (m) (1) (m)

(j)

(j)  (j)

uk 
(j) p ( xk | xk-1 ) p ( yk | xk  )

         g ( xk | xk-1 )

(j)       (j)                          (j)   

(j)   

wk  = wk-1 uk 
(j)           (j)      (j)   
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Xi lu Wang
TRANSFER LEARNING-BASED SURROGATE ASSISTED 
EVOLUTIONARY BI-OBJECTIVE OPTIMIZATION FOR 
OBJECTIVES WITH DIFFERENT EVALUATION TIMES

ABSTRACT

Various multiobjective optimization 
algorithms have been proposed 
with a common assumption that the 
evaluation of each objective function 
takes the same period of time. Little 
attention has been paid to more 
general and realistic optimization 
scenarios where different objectives 
are evaluated by different computer 
simulations or physical experiments 
with different time complexities 
(latencies) and only a very limited 
number of function evaluations is 
allowed for the slow objective. 

We propose a transfer learning scheme 
within a surrogate-assisted evolutionary 
algorithm framework to augment the 
training data for the surrogate for the 

slow objective function by transferring 
knowledge from the fast one.

Specifically, a hybrid domain adaptation 
method aligning the second-order 
statistics and marginal distributions 
across domains is introduced to 
generate promising samples in the 
decision space according to the search 
experience of the fast one. 

A Gaussian process model based 
co-training method is adopted to 
predict the value of the slow objective 
and those having a high confidence 
level are selected as the augmented 
synthetic training data, thereby 
enhancing the approximation quality of 
the surrogate of the slow objective.

1. INTRODUCTION

Various multi-objective evolutionary algorithms (MOEAs) have been developed 
to solve multi-objective optimization problems (MOPs) [9, 5]. However, MOEAs 
usually require a large number of objective function evaluations (FEs) to generate 
satisfying approximations to Pareto fronts (PFs), indicating the difficulty to handle 
computationally expensive MOPs where FEs involve computationally intensive 
simulations or costly physical experiments. Surrogate assisted evolutionary 
algorithms (SAEAs) have emerged to be an effective methodology to overcome the 
computational obstacle for applying MOEAs to computationally expensive MOPs 
[11, 4]. Most MOEAs and SAEAs share a common assumption that the computational 
complexities of all objective functions are similar. However, it is common in many 
real-world applications that different objective functions require different evaluation 
times (also referred to as latencies [1]) due to differences in their computational 
complexities. Such MOPs are first considered by Allmendinger et al. in [2], and 
the authors further provided a general problem definition for MOPs with non-
uniform evaluation times (NET-MOPs) in [1]. As done in [2, 1, 6, 14], we consider an 
expensive bi-objective optimization problem where one objective function is more 
computationally expensive than the other, NET-BOPs by short. To simulate NET-BOPs, 
we use the notations and assumptions as initially proposed in [1, 6], which we recap 

  continued
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here for completeness reasons; the notations will also be to discuss related research 
and the proposed method for dealing with NET-BOPs.

•	 The slow (or delayed/expensive) objective function is denoted as ƒs, while the 
fast (or non-delayed/cheap) one is denoted as ƒƒ , and the corresponding surro- 
gates for the two objective functions are denoted as GPs and GPƒ , respectively. 
We assume that the evaluation of the fast and slow objective functions can be 
done in parallel.

•	 It is assumed that the computation time for building surrogates and for 
implementing the genetic operators is negligible compared to that for evaluating 
the expensive objectives. Consequently, the total computation time available for 
solving the NET-BOPs is defined by the total budget for FEs.

In this work, we propose and validate a more efficient approach to exploit the 
transferable knowledge from the additional samples for ƒƒ  by integrating a TL 
strategy into a GP based SAEA for solving NET-BOPs, termed Tr-SAEA. Recall that 
more new samples X ƒnew

 on the fast objective ƒƒ  can be collected than the slow 
objective owing to the big computational difference between ƒƒ  and ƒs , when we 
use AFs to select samples to be evaluated using the true objective functions. We 
hypothesize that samples selected according to an AF for the fast objective ƒƒ  are 
not only helpful for the optimisation of ƒƒ , but also beneficial for the optimisation of 
ƒs . The reason for this hypothesis is that there is a functional relationship between 
the values of ƒƒ and ƒs (usually a trade-off relation) for solutions on or near the Pareto 
front [8]. Consequently, it makes sense to leverage knowledge readily available 
for ƒƒ , i.e., the label-rich source domain in the light of TL, to improve the learning 
performance of ƒs , which is the label-scarce target domain ƒs .

2. PROPOSED ALGORITHM

2.1. Notations
•	 Two GPs for ƒs , denoted as GPs1 and GPs2, are constructed in the co-training 

paradigm in Tr-SAEA. The initial population X is evaluated on both ƒƒ and ƒs.

•	 While a very limited number of new samples  Ds
new = ( X s

new , Y s
new ) is affordable 

for ƒs ,  more new samples D ƒ
new = ( X ƒ

new , Y ƒ
new ) are allowed ot be evaluated on ƒƒ . 

We apply the proposed HDA method on D ƒ
new so that some promising candidate 

solutions X s 
new for the target domain ƒs  are generated. Data X ƒ

new and X s
new are 

combined as a set of promising samples X 

a
s                 for ƒs . Note that the slow objective 

values associated with Xa
s                  are unknown; hence, a co-training based SSL 

algorithm is further proposed to leverage these unlabeled target solutions.

•	 Let  ( Y 
a
s1 , σ 

a
s1 ) and  ( Y 

a
s2 , σ 

a
s2 ) denote the predictions of GPs1 and GPs2 on X 

a
s                  , 

respectively, where Y denotes the predicted objective value and σ denotes the 
corresponding a confidence level. Subsequently, each of the regression models 
GPs1 and GPs2 will identify a subset of X 

a
s with a higher confidence level to update 

each other. In this way, the chosen subsets denoted as Dt1 and Dt2 can augment 
the training data for ƒs , transferring knowledge from ƒƒ to ƒs .

•	 Ds1 = ( X, Ys ) + Ds
new + Dt1 and Ds2 = ( X, Ys ) + D s

new + Dt2 are defined as the training 
data sets for GPs1 and GPs2, respectively, while Dƒ = ( X , Yƒ ) + D ƒ

new  is defined as 
the training data set for GPƒ .

  continued



2.2. Algorithm Framework
Tr-SAEA focuses on how to transfer knowledge embedded in the label-rich 
source domain ƒƒ to improve the learning of the label-scarce domain ƒs in building 
surrogates. We design two major components in Tr-SAEA, a hybrid domain adaptation 
(HDA) method and a co-training mechanism, as described by the following step-by-
step procedure. The details of the key components in Tr-SAEA will be presented in 
the following subsections.

•	 Step 1: Construct surrogate models. Tr-SAEA begins with sampling two different 
training data sets ( D0

ƒ  and D0
s  ) from ƒƒ and ƒs in the same way used in [7], where 

the Latin hypercube sampling (LHS) is employed to initialize the population and a 
SOEA is performed to consume the additional evaluation budget available for ƒƒ . 
Subsequently, while a GPƒ is trained with D0

ƒ   for ƒƒ , GPs1 and GPs2 using different 
kernel functions with D0

s  are generated to implement co-training mechanism for 
ƒs .

•	 Step 2: Select new samples. Similar to standard GP-based SAEAs, a baseline 
MOEA, which is RVEA [5] in this work, is employed to optimize the NET-BOP for 
a certain number of generations. Here, the two objectives are predicted by the 
GPs instead of using the true objective values. The optimized population will 
then be evaluated according to the AFF [13], and the selection strategy in RVEA 
is adopted to select u and u * τ  new samples to be evaluated using ƒƒ and ƒs , 
respectively, due to the different evaluation times. In this way, we can obtain  
Ds

new = ( X s
new , Y s

new ) and D ƒ
new = ( X ƒ

new , Y ƒ
new ) .

•	 Step 3: Implement HDA in the objective space to align the second-order statistics 
and marginal distributions of the source domain (ƒƒ ) and target domain (ƒs ). 
Motivated by the fact that there is a functional relationship between ƒs and ƒƒ 
on and near the PF, we attempt to find a common latent space to minimize the 
difference between the two domains. Firstly, CORAL is adopted to construct a 
transformation matrix (denoted as A) to minimize the domain shift by aligning 
the second-order statistics of both domains. As CORAL does not consider the 
distribution alignment, TCA is adopted to further discover a feature representation 
in a latent space having the same marginal distribution across the two domains. 
Using the joint matching method yields the mapping Y ’s

new  of Y ’ ƒ
new in the latent 

domains. Subsequently, an SOEA is adopted to exploit promising decision 
variables X ’s

new whose associated slow objective values are close to Y ’s
new in the 

obtained latent space.

•	 Step 4: Implement the co-training strategy to identify reliable unlabeled data 
with regard to the predictions of GPS1 and GPS2 , which will be then used as 
labelled data for training GPS1 and GPS2 together with the real data. Let the set of 
promising samples be X 

a
s                  = ( X ƒ

new , X’ ss
new ).  The two GPs for ƒs separately provide 

their predictions on X 

a
s                 , including the predicted fitness value and a confidence 

level. Based on the labeling confidence, GPs1 and GPs2 will select u * τ  unlabeled 
samples ( Dt1 and Dt2 ) associated with predicted labels from X 

a
s                 , and then add 

these reliable unlabeled samples to their training data sets, respectively.

•	 Step 5: Update GPs with different training data sets. GPs1 and GPs2 will be 
updated with Ds1 = ( X , Ys ) + Ds

new + Dt1 and Ds2 = ( X , Ys ) + Ds
new + Dt2, respectively, 

while GPƒ is updated with Dƒ = ( X , Yƒ ) + D ƒ
new . The process repeats until the 

maximum number of evaluations is reached.

  continued

2.3. Hybrid Domain Adaptation
In Tr-SAEA, a hybrid domain adaptation method is proposed to use the available 
data drawn from the source domain (ƒƒ ) to generate data in the decision space for 
the target domain (ƒs ) based on the correlation between the two domains. The key 
motivation is that there is a functional relationship between ƒƒ and ƒs when they are 
closed to the PF [8]. We adopt CORAL to align the second-order statistics of both 
domains due to its simplicity and efficiency, and then employ the TCA to match the 
marginal distributions of both domains in a Reproducing Kernel Hilbert Space (RKHS). 

CORAL constructs a transformation matrix A of the source features by minimizing the 
distance between the second-order statistics across the source and target domains, 
and the Frobenius norm is adopted as the matrix distance metric, which can be 
achieved as follows,

 		  min   CŜ - CT     
    

        =  min    AT Cs A - CT                                            (1)

where CŜ , CS and CT denote covariance matrices of the transformed source features, 
the source features, and target features, respectively, and ||   ||2F denotes the squared 
matrix Frobenius norm. Note that, as an alternative of other approaches to domain 
shift, CORAL avoids subspace projection that can be computationally intensive. 
Moreover, CORAL is very easy to implement. However, it is not able to account for the 
distribution alignment.

TCA is adopted to explore a set of common transfer components across the two 
domains by minimizing the marginal distribution discrepancy in a latent space, while 
preserving data properties in the original space. To achieve this, TCA minimizes the 
distance between the means of the source and target data based on the RKHS using 
the maximum mean discrepancy (MMD) [3] as a marginal distribution measurement 
criterion, and further enforces the scatter matrix as a constraint [12]. The distance 
between two distributions P ( ZS ) and P ( ZT )  can be estimated by MMD in an RKHS 
[12],

	               Dist ( Z’S , Z’T )  =    —  ∑ φ ( ZS ) - — ∑  φ  ( ZT )                            (2)

where Z’S and Z’T denote the transformed input sets from the source and target 
domains, n1 and n2 denote the number of samples in each domain, and φ denotes the 
desired transformation mapping. Here, CORAL cooperates with TCA to construct a 
mapping matrix A × W , allowing us to transfer some promising samples of the source 
domain to the target domain for the benefit of training the surrogate and guiding the 
search of ƒs . Hence, once Y ƒ

new is generated, we can map them into the latent space 
with the help of the mapping matrix A × W in order to generate useful data Y’ ss

new for 
the target domain. Similar to the method in [10], we further explore the decision space 
to find new samples X’ ss

new and enforce its objective values on ƒs to be close to Y’ ss
new in 

the latent space.

2.4 GP-based Co-training Method
With the help of domain adaptation, we are able to identify a set of promising 
samples X 

a
s     (in decision space), which are considered to be useful for the target 

domain (ƒs ). Here, a GP-based co-training method is proposed in Tr-SAEA to leverage 
these unlabeled data. 
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First, in GP-based co-training method, we utilize different kernel functions in the two 
GPs ( GPs1 and GPs2 ) to achieve diversity, instead of requiring sufficient and redundant 
views or different learning algorithms. 

Second, for the selected unlabeled samples X 
a
s     , GPs1 and GPs2 provide their 

predictions combined with a confidence level: ( Y 
a
s1 , θ 

a
s1 )  and ( Y 

a
s2 , θ 

a
s2 ) , respectively. 

We then rank the predicted data according to the confidence level in an ascending 
order. Then, the most reliable predicted samples are selected as the augmented data 
sets Dt1 and Dt2 to enlarge the training sets Ds1 and Ds2, respectively.

3. EXPERIMENTAL RESULTS
We have selected three widely used suites of bi-objective test problems for 
our experimental study, and extend them to simulate NET-BOPs. The inverted 
generational distance (IGD) [16] and hypervolume (HV) [15] are adopted to assess the 
performance of the algorithms.

3.1. Comparison with State-of-the-art methods
From these results, we can see that Tr-SAEA has achieved the best overall 
performance on the three test suites, followed by HK-RVEA. Overall, the non-
surrogate based methods (Waiting, Fast-first, Brood and Speculative interleaving) 
cannot compete with the surrogate-based methods (HK-RVEA, Tr-SAEA, T-SAEA), 
confirming the observation already made in [6].

4. CONCLUSION
In this paper, an effort is made to solve MOPs where different objective functions 
take considerably different evaluation times. To more efficiently solve bi-objective 
optimization problems with one fast objective and one slow objective (NET-BOPs), we 
integrate a transfer learning scheme into an SAEA framework to augment the training 
data for the slow objective by transferring knowledge from the fast one, thereby 
alleviating the search biases caused by different computational budgets needed for 
evaluating the two objectives. We compare the proposed algorithm, Tr-SAEA, with 
five state-of-the-art (surrogate and non-surrogate-based) delay-handling strategies, as 
well as four variants of Tr-SAEA, on three widely used test suites.
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based on the use of Gaussian Process 
(GP) [15]. By adjusting the parameters 
of a GP on the mass residuals of two 
nuclear functionals: UNEDF0 [16] 
and UNEDF1 [17], I will show how it 
is possible to reduce the global root 
mean square (RMS) deviation of the 
residuals. This GP method assumes 
that the residuals originate from some 
multivariate Gaussian distribution, 
whose covariance matrix contains 
some parameters to be adjusted in 
order to maximise the likelihood for the 
GP’s fit to the residuals.

2. APPLICATION OF GAUSSIAN 
PROCESS TO NUCLEAR MASSES

A Gaussian process is an infinite-
dimensional Gaussian distribution. 
Similar to how a one dimensional (1D) 
Gaussian distribution has a mean µ 

and variance σ 
2, a GP has a mean 

function µ (x), and a covariance function 
k (x, x’ ), also known as the kernel [18]. 
x is a vector of length d representing 
a point in a d-dimensional input 
space. Just as we can draw random 
samples (numbers) from a 1D Gaussian 
distribution, one can also draw random 
samples from a GP, which are functions 
ƒ(x). The kernel k (x, x’ ) tells us the 
typical correlation between the value 
of ƒ at any two inputs x and x’, and 
entirely determines the behaviour of 
the GP (relative to the mean function). 
For simplicity, one can set a constant 
mean function of 0. If the data have a 
non-zero mean, it is always possible to 
rescale them.

		

Alessandro Pastore
NUCLEAR PHYSICS IN A MACHINE LEARNING ERA 

1. INTRODUCTION

To date more than 2400 nuclear 
masses have been measured [1], but 
current nuclear models predict the 
existence of more than 6000 [2]. 
The detailed knowledge of nuclear 
masses is key to understand several 
physical phenomena as the r-process 
nucleosynthesis [3] or to assess the 
structure of the crust of a neutron star 
[4, 5].

Within the literature, it is possible 
to find several mass models with a 
typical accuracy, i.e., the root mean 
square (RMS) deviation of the residuals, 
spanning from 2 MeV to 500 keV 
[6]. Although such an accuracy is 
remarkably good compared to the 
typical nuclear binding energies, it 
is important to further improve the 
accuracy of such models in order 
to be able to describe correctly 
the properties of very neutron rich 
nuclei [7]. In order to achieve such an 
ambitious goal, several techniques 
have been employed, but the most 
promising ones are based on the use of 
machine learning (ML) methods such as 
kernel ridge regression [8], radial basis 
function interpolation [9, 10], neural 
networks [11–13] or Gaussian Process 
[14]. By adding these ML on top of a 
nuclear model, it is thus possible to 
reduce the discrepancy between the 
data and the extrapolated values up to 
less than 200 keV [14].

In the present article, I present the main 
achievements obtained in Ref. [14] and 

  continued

In the current work, I use the following kernel

where in the present case x = (N, Z), and η2, ρZ , ρN are the adjustable parameters. 
Following Ref. [7], ρN and ρZ are interpreted as correlation lengths in the neutron and 
proton directions, while η2 gives the strength of the correlation between neighbouring 
nuclei.

The addition of the nugget means that the GP mean now does not necessarily pass  
directly  through each data point. The main role of the nugget is to avoid over-fitting, 
which manifests itself via a correlation length smaller to the typical separation of the 
data [13]. For a more detailed discussion on GP and the role of the nugget we refer to 
Ref. [7].

Following the procedure applied in Ref. [14], I consider only the 2400 nuclear masses 
directly provided in the AME2016 database [1]. In the upper panels of Fig. 1, I illustrate 
the residuals of the two UNEDF0 and UNEDF1 models in the region 8 ≤ Z ≤ 110. The 
RMS of the two models is σ UNEDF0 = 1.43 MeV σ UNEDF1 = 2.00 MeV. This value is quite 
high compared to more sophisticated mass models as discussed in Ref. [6], but 
one has to bear in mind that UNEDF models reproduce also a large variety of other 
nuclear observables.

After applying the GP detailed in Eq.1 on the residuals of UNEDF0 and UNEDF1, I 
obtain more accurate mass models whose residuals are illustrated in the lower panels 
of Fig. 1. The global RMS goes down to σ UNEDF0-GP = 0.419 MeV σ UNEDF1-GP = 0.420 MeV.
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kRBF (x , x’ )  = η2 exp  -                   -                     +  σ2
nδxx’     ,		                           (1)

( N - N’ )2       ( Z - Z’ )2 

   2ρ2
N                2ρ2

Z   

Figure 1 | Upper panels: residuals of the UNEDF0 and UNEDF1 mass models. Lower panels: residuals of the 
UNEDF0 and UNEDF1 models equipped with the additional GP. See text for details.

  continued



3. CONCLUSIONS

By using a Gaussian process with 4 adjustable parameters fitted to the residuals 
of the UNEDF mass model, I have been able to create a mass model with a global 
RMS of less than 500 keV, thus improving the original value by a factor of 3-4. The 
improvement is roughly independent of the starting point, i.e. the nuclear mass 
model used to originate the residuals as also shown in Ref. [7]. Having improved the 
models, one can now use them to perform extrapolations in regions of the nuclear 
chart where no data are available [5, 14]. At large extrapolations, the trend is always 
dictated by the model since the GP tends to 0. To avoid such a model dependence, 
in recent years, some authors suggested to perform a Bayesian Model Averaging in 
order to obtain more robust extrapolations [19].
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Tao Chen
SURROGATE ASSISTED CALIBRATION OF COMPUTATIONAL 
FLUID DYNAMICS MODELS

ABSTRACT

Computational fluid dynamics (CFD) 
is a simulation technique widely used 
in chemical and process engineering 
applications. However, computation has 
become a bottleneck when calibration 
of CFD models with experimental 
data (also known as model parameter 
estimation) is needed. In this research, 
the kriging meta-modelling approach 
(also termed Gaussian process) was 
coupled with expected improvement 
(EI) to address this challenge. A new EI 
measure was developed for the sum of 
squared errors (SSE) which conforms 
to a generalised chi-square distribution 
and hence existing normal distribution-

based EI measures are not applicable. 
The new EI measure is to suggest 
the CFD model parameter to simulate 
with, hence minimising SSE and 
improving match between simulation 
and experiments. The usefulness of the 
developed method was demonstrated 
through a case study of a single-phase 
flow in both a straight-type and a 
convergent-divergent-type annular jet 
pump, where a single model parameter 
was calibrated with experimental data. 
This talk is based on a journal article 
we previously published in the AIChE 
Journal.

Figure (a) Using expected improvement (EI) of the sum-of-squared (SSE) error as a measure for model calibration 
under the uncertainty between the surrogate model and the underlying complex simulation. Figure (b) Case study 
on a convergent-divergent jet pump and its typical CFD simulation. Figure (c) Illustration of calibration results. 
Kajero et al., AIChE J, 62: 4308, 2016.



Carmen Calama Gonzalez
BAYESIAN CALIBRATION OF BUILDING ENERGY MODELS  

RESEARCH HYPOTHESIS AND OBJECTIVE
The improvement in energy efficiency of existing buildings is key for meeting 2030 
and 2050 energy and CO2 emission targets. Three-quarters of the existing Spanish 
stock was built prior to energy performance regulations and the current new-built 
construction rate is less than 2% [1]. Building energy modelling (BEM) plays a crucial 
role in evaluating the performance of retrofit actions in terms of energy consumption 
and thermal comfort. Nonetheless, uncalibrated and invalidated BEM may lead to 
uncertain predictions. This research [2] aims at determining whether or not it is 
possible to properly calibrate and validate BEM at an hourly basis through on-site 
measurements to accurately assess the thermal comfort performance in buildings.

METHODOLOGY
A Bayesian calibration approach [3], combined with Morris sensitivity analysis [4,5], is 
applied to reduce discrepancies between measured and simulated hourly indoor air 
temperatures. The following steps are taken (Figure 1): Firstly, a BEM of a controlled 
and monitored environment, a test cell case study, is developed using EnergyPlus. 
Later, the most influential model parameters on the simulation outputs are obtained 
through the one-step-at-a-time Morris sensitivity analysis. Only the top-4 most 
influential parameters are calibrated, since the Bayesian method is computationally 
prohibitive in a high-dimensional parameter space [ ] and increasing the calibration 
parameters may lead to inaccuracy and ineffectiveness. Finally, the accuracy of the 
calibrated model is measured using the uncertainty indices defined in the ASHRAE 
Guideline [ ]: the Normalized Mean Bias Error (NMBE), the Coefficient of Variation of 
the Root Mean Square Error (CVRMSE) and the Coefficient of Determination (R²).

Figure 1 | Methodology followed [2]

  continued

In calibration, the number of iterations 
the algorithm runs and the warm-up 
argument (steps used to automatically 
tune the sampler) were set at 500 
and 250, respectively. Since the 
assessment of thermal comfort is 
normally based on hourly data, it 
requires a higher precision than that 
of energy consumption (generally 
evaluated at monthly resolution: 12 
points). Thus, a 24-hour training period 
is used, with a total of 960 simulated 
points. Uncertainties associated with 
model inputs (fixed parameters in 
the model), model discrepancies due 
to physical limitations of the BEM 
(simplifications when compared to 
the real performance of the building), 
errors in field observations and 
noisy measurements are accounted 
for. The parameter uncertainty was 
taken into account by specifying a 
prior distribution for the calibration 
parameters, which includes the 
most likely range of possible values, 
considering building specifications, 
tests and expert judgement. Simulation 
runs are used to identify which 
parameters are most likely to lead 
to the observed data, updating prior 
distributions and calculating posterior 
distributions.

ANALYSIS AND DISCUSSION
Several scenarios are evaluated to 
determine how different variables may 
impact the calibration: (1) solar radiation 
by changing orientation (North and 
South); (2) mechanical ventilation (MV), 
which is scheduled as OFF or ON (from 
22:00 to 8:00 at 1.75 ACH); and (3) 
blind aperture levels, considering no 
window for north orientation (b0) and 
window half open for south orientation 
(b50). 

Sensitivity analysis reported that the 
most influential parameters in the 
north facing cell were infiltration, 
thermal absorptance of the façade and 
roof, and conductivity of the facade. 
In the south facing cell, the top-four 
parameters were conductivity and solar 
transmittance of the glazing surface, 
infiltration and thermal absorptance 
of the façade. The ventilation rate 
and fan efficiency were of utmost 
importance when the MV was ON in 
both orientations. In calibration, visual 
inspection of the plots suggested that 
the sampling algorithm was efficiently 
exploring the posterior distribution. 
The potential scale reduction statistic 
(Rhat) was within 1.0±0.1 in all scenarios. 
Thus, convergence was successfully 
achieved. Results of the calibration 
analysis through the uncertainty indices 
are shown in Table 1. To check for bias 
in the evaluation process, these indices 
are determined using an independent 
120-hour dataset with 4,800 simulated 
points (testing period), different from 
the training period. Even though 
uncalibrated models were within the 
uncertainty ranges of the ASHARE, 
pre-calibration simulation outputs over-
predicted measurements up to 3.2 ºC. 
After calibration, the average maximum 
temperature difference was reduced 
to 0.68 ºC, improving the results by 
almost 80%. 

Monitored data was within the 
uncertainty range (95% confidence 
intervals) of the calibrated model, 
considering variations within the 
posterior distribution ranges. With an 
accuracy of the probes of ±0.5 ºC and 
±1.0 ºC for 10-30 ºC and 30-55 ºC, 
respectively, the model is considered 
to be well calibrated.

  continued
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CONCLUSIONS
Implementing a first level statistical calibration-simulation methodology, which 
combines sensitivity analysis and Bayesian techniques, is proven to improve the level 
of agreement between on-site measurements and simulated outputs. Applying this 
method is useful for calibrating and validating indoor hourly temperatures, providing 
adequate results for thermal comfort assessment. However, results reported may 
only be applied to simple houses or small single zone units (flats or small offices) 
with limited ventilation and few wall partitioning. Besides, this research was carried 
out in an unoccupied, highly controlled environment with free-running conditions (no 
HVAC systems). Thus, future research should test this methodology in real building, 
evaluating its viability and accuracy in models with different grades of complexity.
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Table 1 | Assessment of the model’s accuracy: comparison between uncalbirated and calibrated models [2]

A lex Shestopalof f
THE ESSENTIALS OF MARKOV CHAIN MONTE CARLO 

1. MOTIVATING EXAMPLE: STATE SPACE MODELS

State space models model the distribution of an observed sequence y 1:T = (y 1, . . . , yT) . 
Here, Yt are drawn from an observation density g ( y t | xt, θ) and Xt is an unobserved 
Markov process with initial density µ ( x1 | θ ) and transition density ƒ(xt | xt−1, θ). We 
focus on inferring X1:T = ( X1 , . . . , XT ), assuming θ is known. Parameter inference can 
be easily built on top of this, eg,. by alternately inferring (X1 , . . . XT ) and θ.

1.1. Bayesian inference for state space models

We will infer X1:T by sampling from the posterior density of X1:T given y1:T ,

                           p ( x1:T | y1:T ) ∝ µ ( x1 )      ƒ ( xt | xt-1 )      g ( yt | xt ) .

No exact solution to this sampling problem is present, except for linear Gaussian 
models or models with a finite state space. In these cases, we can use the Kalman 
filter or the forward-backward algorithm. Most often, approximate methods such as 
Markov Chain Monte Carlo (MCMC) must be used. Why is it difficult to sample from 
p ( x1:T | y1:T ) with MCMC? Strong temporal dependencies amongst the xt can make 
sampling inefficient and thus requiring sophisticated MCMC methods.

2. BASICS OF MARKOV CHAINS

Suppose we want to sample X1:T when X1:T has density p ( x1:T | y 1:T ). To do this, we can 
construct a Markov chain with transition kernel K (x1:T , x’1:T ) that leaves p invariant. 
This means that the transition kernel K satisfies

                                 p (x1:T | y 1:T ) K (x1:T , x’1:T ) d x1:T = p ( x’1:T | y 1:T ) .

Provided the Markov chain is ergodic, this condition ensures that its distribution will 
converge to p. This leads to an approach for drawing samples from P. This is done 
by simulating the Markov chain. If we run the Markov chain long enough, we will be 
able to draw samples approximately distributed as p. We would like the Markov chain 
to produce samples with low autocorrelation time, after adjusting for computation 
time. We are interested in samples with low autocorrelation time in order to produce 
estimates with low variance.

T                           T

t=2                                     t=1

Prior                     Likelihood

  continued
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3. COMMON MCMC ALGORITHMS

We briefly look at a couple of common MCMC algorithms.

3.1. Metropolis-Hastings

Suppose we are interesting in sampling from p ( x1:T | y1:T ). Given x1:T , we use a 
proposal density q ( x*1:T | x1:T ) to draw a candidate x*1:T for the next point x ’1:T in the 
chain. Then, we accept x*1:T with probability

min     1 ,                                                 . 
p ( x*1:T | y 1:T ) q (x1:T | x*1:T )         

p ( x1:T | y 1:T ) q (x*1:T | x1:T )

If x*1:T is accepted, set x ’1:T = x*1:T and otherwise set x ’1:T = x1:T . The choice of q is such 
that we have a low autocorrelation time.

3.2 Gibbs Sampling

Suppose we have access to conditional densities of each variable, given the other 
ones. With Gibbs sampling, we update each coordinate xt in turn by sampling the 
conditional density p ( xt | xt≠j , y 1:T ) ∝ ƒ ( xt+1 | xt ) ƒ ( xt | xt−1 ) g ( y t | xt ). On a general 
note, it can be beneficial to combine various MCMC updates, provided this is done 
correctly.

4. CONDITIONAL SEQUENTIAL MONTE CARLO

This is a modern method for sampling state sequences in general state space models 
(Andrieu, Doucet and Holenstein (2010)). It is an MCMC update of x1:T to x ’1:T . This 
approach uses Sequential Monte Carlo (SMC) to create a set of candidate sequences. 
In the SMC pass, one of the particles at each time t is set to xt . An advantage of 
conditional SMC is that it can use all particles generated by an SMC pass to construct 
a set of candidate sequences. Advantages of conditional SMC include: ability to 
sample state sequences with strong temporal dependencies and it is computationally 
inexpensive. The disadvantages are: poor scaling to models with high-dimensional 
states. Also, typical choice of target densities does not consider all observed data.

5. HAMILTONIAN MONTE CARLO

This method is due to Duane, Kennedy, Pendleton and Roweth (1987). Suppose we 
have a distribution of interest: π ( q ) = ( 1/Z ) exp (−U(q)) with U (q) the “potential 
energy”. We introduce a vector of auxiliary “momentum” variables p with same 
dimensionality as q, define a “kinetic energy” K(p). Common choice is K(p) = pT

 p/2 ie., 
Gaussian momentum variables. The “Hamiltonian” is H (p,q) = U(q)+K(p); density of 
(q,p) proportional to exp (−H(p,q)), q and p are independent; the marginal density for 
q is π.

The Hamiltonian dynamics are defined by the differential equations describing the 
evolution of (q, p) in “time” t.

dqi        ∂H     dpi              ∂H

dt      ∂pi          dt         ∂qi

      =        ,         = -         . 

  continued

For H (q,p) = U(q)+K(p) with K(p) = pT
 p /2 ,

(q, p) evolves to (q*, p*) by applying Hamiltonian dynamics. Key properties of this 
mapping are (1) it leaves H invariant and (2) it preserves volume in (q, p). In most 
cases these equations cannot be solved exactly so we need to approximate them 
with some stepsize є. A common choice of discretization is the “leapfrog” algorithm.

The proposal follows a trajectory that is not a random walk. After L leapfrog steps, 
we expect the proposal to be at a distance єL from the initial point. Tuning є is a 
challenge: on one hand, we want the discretization to be stable, on the other hand 
we want the proposal to lie far from the initial point. Tuning L is another challenge: we 
would like the proposed point to be close to independent of the initial point. Finally, 
the dynamics can exhibit “doubling back”, a problem that has been addressed in 
practice in numerous ways, eg., NUTS of Hoffman and Gelman (2014).
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dqi                  dpi              ∂U

dt                    dt         ∂qi
      =  pi  ,          =            . 
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Denis Erkal
FITTING NOISY DATA WITH NOISY MODELS 

ABSTRACT

In astrophysics, we sometimes need to 
compare noisy data with noisy models. 
I will present one such scenario in 
which this arises when the model 
has shot noise since it is an N-body 
simulation consisting of a discrete 
set of particles. I will briefly explain 
the astrophysical motivation of the 
problem. 

Figure | Here we show an astrophysical example of a noisy model fit to noisy data. The data is shown in red and 
shows measurements of the 3d position and 3d velocity of stars orbiting the Milky Way. The blue points show an 
N-body model simulated in a potential similar to that of our Galaxy which can reproduce the trends seen in the 
data. To perform the fit, we must ensure that the noise in the model (shot noise from a finite number of particles) is 
much smaller than the uncertainties in the data.

I will then explain how we fit these 
models to the data using an MCMC 
as long as the shot noise in the model 
is sufficiently small and discuss some 
pitfalls. I will also present a toy model 
which has the same characteristics to 
better explore this problem.

Joaquín García de la Cruz

ABSTRACT

In this talk, I will talk about my personal 
experience using MCMC methods 
during the course of my PhD. 

Firstly, I will show through different 
examples how the physical 
interpretation of the fitted values and 
their uncertainties was crucial in solving 
problems in my research. Sometimes, 

failing to fit the data – especially due 
to high uncertainties – led me to new 
insights about a system I was struggling 
to understand, even taking that project 
into a whole new direction. 

Secondly, I will talk about situations 
where I still struggle fit the data, and I 
will share my insights as to why.

USING MCMC METHODS FOR FITTING DATA: FROM 
FAILING TO LEARNING 

Figure | For a simulated disc galaxy, values of the scale-height against radius for the thin disc (triangles), thick 
disc (squares), and mono-age populations (solid lines) colour-coded by age. The vertical black line on the left 
represents where the galactic disc starts. A second vertical black line represents where fits for the thick disc’s 
scale-heights show very high uncertainties.
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Minas Karamanis
PARALLEL,  BLACK-BOX AND GRADIENT-FREE INFERENCE

ABSTRACT

Modern astronomical and cosmological 
analyses have been revolutionised 
by the use of Markov Chain Monte 
Carlo (MCMC) methods for Bayesian 
inference and data analysis. However, 
the characteristics of most astronomical 
models (e.g. computational cost, 
intractable derivatives) pose substantial 

challenges to many state-of-the-
art MCMC methods. To this end, 
we introduce a new method called 
Ensemble Slice Sampling for parallel, 
black-box and gradient-free inference 
and its Python implementation zeus in 
order to facilitate astronomical analyses 
more efficiently.

1. INTRODUCTION

Bayesian inference and data analysis have become an integral part of modern 
science and astronomy in particular. This is partly due to the capacity of Markov Chain 
Monte Carlo (MCMC) methods to generate samples from posterior distributions. As 
the amount of collected data and astronomical observations increases so does the 
complexity and computational cost of the theoretical models that are developed in 
order to account for those observations. The increased model complexity, both in 
terms of high dimensionality (e.g. large number of parameters) and non-linearity of 
the physics involved, has led to posterior distributions that are difficult to sample 
from even when state–of–the–art methods are used. Peculiar posterior distributions 
can also emerge in cases in which the data are sparse (e.g. exoplanet radial velocity 
measurements).

MCMC sampling is often the main computational bottleneck of modern astronomical 
pipelines. We will argue that this is mostly because of some odd aspects and 
characteristics of astronomical and cosmological models. First of all, and perhaps 
most importantly, astronomical models are often quite slow, meaning that one 
evaluation, for a specific set of parameters, can take from few seconds to a few 
minutes (e.g. one model evaluation of the CAMB or CLASS Boltzmann codes which 
are used in most cosmological analyses require 5 − 10 s in a modern CPU). Unlike 
the models that are used in other fields of study, most astronomical models are not 
differentiable. This means that gradient–based methods such as Hamiltonian Monte 
Carlo (HMC) [5] and its variations cannot be applied.

  continued

Based on the aforementioned characteristics we can compile a list of properties 
of the ideal sampler for astronomical applications. In order to handle the high 
computational cost of the models the ideal MCMC sampler needs to be able to scale 
favourably with the number of available CPUs. Another constraint comes from the 
non-differentiable nature of the models. The sampler needs to be able to generate 
samples from the target distribution without relying on the availability of the score 
function (i.e. gradient of the log–probability). Finally, in order for the sampler to be 
versatile and able to sample efficiently from a wide range of target distributions it 
needs to be able to maintain a high level of sampling efficiency even in cases of 
high correlation between parameters (i.e. highly skewed or anisotropic distributions) 
without requiring any hand-tuning from the user.

So far, only a limited number of samplers have been widely applied to astronomical 
and cosmological problems. Those include: the Random Walk Metropolis (RWM) 
algorithm (i.e. Metropolis-Hastings with symmetric normal proposal distribution), the 
Affine Invariant Ensemble Sampler (AIES) using the Stretch move [2], the Differential 
Evolution Monte Carlo (DEMC) [6] method. Unfortunately, RWM requires great 
amounts of hand-tuning and even when it is tuned this is done assuming that a single 
proposal scale is optimal for the whole parameter space. While AIES does not require 
any hand-tuning it does not scale well with the number of dimensions and it is prone 
to mode collapse issues. DEMC is optimal only for the case of normal distributions 
and its efficiency drops rapidly when this condition is violated.

2. METHODS AND RESULTS

Based on the above discussion there is clearly a need for new methods that could 
complement the existing ones. This is of paramount importance for cases in which 
the aforementioned methods usually struggle to generate samples (e.g. higher 
dimensional problems, mildly non-linear correlations, multimodal distributions). 
To this end we introduce Ensemble Slice Sampling (ESS) [3], a parallel, black–box 
and gradient–free method for Bayesian inference in correlated and multimodal 
distributions. ESS is the amalgamation of two separate methods, Slice Sampling and 
Ensemble MCMC, in such a way as to complement each other. Slice Sampling is 
based on the idea that instead of sampling from a distribution with density p(x) one 
can sample uniformly from the area under the graph of ƒ(x) ∝ p(x). Slice Sampling is a 
univariate scheme that has a single hyper–parameter (i.e. the initial length scale) that 
is auto–tuned during the run. By design, Slice Sampling performs no rejections at the 
level of the Markov chain. Ensemble MCMC utilises a collection of parallel and inter-
acting chains, called walkers, which preserve the product density 
P(x1, x2, . . . , xN ) = p(x1)p(x2) . . . p (xN) without the individual walker trajectories being 
independent, or even Markovian. ESS functions by performing Slice Sampling 
updates along directions chosen using the ensemble of walkers. There are arbitrary 
many ways of defining those direction vectors and each one yields a new algorithm 
with different characteristics, strengths and weaknesses. However, few of them 
such as the Differential move or the Global move are general enough that they can 
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be applied to most problems [3, 4]. The final method is parallel and scales linearly 
with the number of available CPUs (i.e. for nCPUs ≤ nWalkers /2, requires no hand-tuning 
or gradient information, and it is affine invariant, meaning that its performance is 
insensitive to linear correlations). Empirical tests demonstrated that compared to 
RWM, Slice Sampling, AIES, DEMC and Sequential Monte Carlo [1], ESS samples at 
least as efficiently and in many cases more efficiently by a significant margin.

3. DISCUSSION

During the past couple of decades, MCMC methods have experienced a substantial 
rise in popularity in the fields of astronomy and cosmology. Given the increased 
sophistication of the astronomical models the aforementioned rise is expected to 
continue making the development of novel sampling methods ever more important. 
We argue that ESS is one such method that could facilitate astronomical research for 
the next decade. A Python implementation of ESS, called zeus [4], is publicly available 
at https://github.com/minaskar/zeus with detailed documentation that can be found 
at https://zeus-mcmc.readthedocs.io.
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Josh Speagle

ABSTRACT

Quantifying model uncertainty and 
performing model selection within a 
Bayesian framework is becoming an 
ever-larger part of scientific analysis 
both within and outside of astronomy. 
I will present a brief introduction to 
Nested Sampling, a complementary 
framework to Markov Chain Monte 
Carlo approaches that is designed 
to estimate marginal likelihoods (i.e. 

Bayesian evidences) and posterior 
distributions, outline some of their pros 
and cons, and briefly discuss more 
recent extensions such as Dynamic 
Nested Sampling. I will also briefly 
highlight “dynesty”, an open-source 
Python package designed to make 
it easy for researchers to applying 
Nested Sampling approaches to 
various “black box” likelihoods present 
in their work.

AN INTRODUCTION TO NESTED SAMPLING

Unit Cube 
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Ellipsoid
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Ellipsoids
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25 26SURREY.AC.UK UNIVERSITY OF SURREY

Figure | A schematic figure highlighting the various strategies used to approximate the shape of the constrained 
prior distribution in Nested Sampling algorithms using the current positions of live points (i.e. chains), shown in 
purple. Samples from the approximation are shown in grey. A small illustration is also shown in the bottom-right 
portion of each panel. The highlighted strategies, from left to right, are: no bounds, a single ellipsoid, multiple 
ellipsoids, many overlapping spheres, and many overlapping cubes.

https://github.com/minaskar/zeus
https://zeus-mcmc.readthedocs.io


Payel  Das
USING ADAPTIVE HAMILTONIAN MONTE CARLO FOR 
TRAINING ARTIFICIAL NEURAL NETWORKS

1. BACKGROUND

Astronomical datasets are undergoing a rapid growth in their size and complexity 
due to past and ongoing surveys. In response to this, astronomers are developing 
machine learning tools to help extract and analyse the wealth of information within 
them. Figure 1 shows how the number of abstracts in the astronomy ArXiv that 
mention ‘machine learning’ has increased over the last 30 years.

The main challenge in making a machine learning model fully Bayesian however, is 
the number of parameters that need to be fit. Even a simple artificial neural network 
(ANN) can have ∼ hundred parameters. Hamiltonian Monte Carlo (HMC) is a Bayesian 
sampling method, perfectly suited to fitting machine learning models because of 
its ability to deal with a large number of potentially correlated parameters. Neal 
recognized this potential back in 1995 [5], but it was only after a much later review 
that HMC became more mainstream [6]. The research objective here is to briefly 
explain the HMC method and then show its application to an astrophysical problem.

2. ADAPTIVE HAMILTONIAN MONTE CARLO

In uncertainty analysis, we are not interested in the peak posterior density but 
rather expectation values of the posterior density such as the mean, to which both 
the posterior density and volume contribute. The posterior density peaks at some 
p = ppeak  but the volume element increases as p increases. Therefore their product 
peaks somewhere between the peak posterior density and a very large volume and 
is called the ‘typical set’ [1]. Increasing the number of dimensions rapidly focuses the 
typical set into a very narrow region. This quickly becomes a challenge to sample 
from, in particular, with a procedure that is completely random.

Figure 1 | The number of abstracts 
in the astronomy ArXiv mentioning 
"machine learning" in the abstract.

  continued

We can write the posterior density P (p,q)  in terms of the Hamiltonian, H(p,q) ,

 		  P (p,q)  = e−H(p,q) ,				               (2)

where in physics, the value of the Hamiltonian at any point in phase space is the 
energy there. Rewriting in terms of the Hamiltonian,

		  H(q,p)  ≡ − log P (p,q) 			              (3)

		               ≡ − log π (q |p) − log P (p) ,		             (4)

where, − log π (q | p) is the kinetic energy K(q,p), while − log P (p) is the potential 
energy V (p). The typical set in phase space (which can be physically interpreted 
as e.g. the stable orbit for a satellite orbiting a planet) is then explored by using 
Hamilton’s equations:

There are two key choices in implementing HMC: 1) the choice of the conditional 
probability distribution over the momentum and 2) the integration time at each step. If 
we integrate for only a short time, we do not optimize the deterministic exploration of 
the typical set. However, if we integrate for too long, trajectories eventually return to 
previously explored neighbourhoods.

      =         =           

dp        ∂H     ∂K

dt      ∂p          ∂q
      =        =         

dq           ∂H       ∂K     ∂V

dt        ∂q            ∂p     ∂q

(5)

(6)

In Hamiltonian Monte Carlo (HMC), Hamtilonian dynamics is used to introduce a 
component of the exploration of the typical set that is deterministic, by solving the 
equations of motion. To apply HMC, you need to define a phase space defined by 
positions and momenta. The parameters of the model become positions, and these 
need to be supplemented by auxiliary momentum parameters, q , to complement 
each dimension of the target parameter space. We can now lift the target distribution 
onto the joint probability distribution in phase space by choosing auxiliary momenta 
randomly, conditioning on the position coordinates,

	                 P (p,q)  = P (q | p) P (p) .                                                    (1)

This ensures that the target distribution can be easily recovered if we marginalize 
out the momentum. Also, the trajectories exploring the typical set of the target 
distribution can easily be recovered by projecting the trajectories in the phase-space 
distribution.
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The No-U-Turn sampler [NUTS, 3] dynamically changes the integration time by 
considering the boundaries of a trajectory. The termination criterion is satisfied 
when any further integration would bring the ends of the trajectory closer together. 
Empirically, this has been shown to work extremely well [1].

3. ASTROPHYSICAL APPLICATION
There is a class of stars called ‘red giants’ that can be seen at different epochs of 
our Milky Way’s existence and all over space. They are therefore very good probes 
for dissecting the formation history of our galaxy. A small sample (∼ thousands) of 
these stars have excellent estimates of their mass from asteroseismology surveys 
that measure how these stars oscillate. These mass estimates can be combined with 
stellar evolution models to obtain very precise ages. Martig et al. (2016) [4] showed 
that the masses can be empirically well predicted from a handful of spectroscopic 
properties that are being measured for millions of stars. Stellar evolution models 
can then be used with these mass estimates to predict ages for millions of stars 
rather than just a thousand. Their simple polynomial model however underestimates 
ages on the high-age end and as they only probe relations between spectroscopic 
parameters and masses, they still need to rely on stellar evolution models to get 
ages. They also do not use new distance information that has become available 
from the Gaia spacecraft. Here we present a new model for predicting ages from the 
newest data. The work presented here is discussed in more detail elsewhere [2].

3.1 Building the training set

We build a training sample using red giant stars for which there are current 
mass constraints from asteroseismology in addition to astrometric (distances to 
stars) constraints as well as photometric (colours and brightnesses of stars), and 
spectroscopic (surface gravity, surface temperature and surface abundances of 
stars) data. We then use a brute-force approach to apply stellar evolution models 
to estimate the posterior densities of mass, age, distance, and metal content (or 
metallicity) for the stars in the training sample.

3.2 Building the ANN

An ANN consists of interconnected layers of neurons, which represent linear or non-
linear transformations by an ‘activation’ function. We assume a feedforward ANN, 
where only neurons in adjacent layers are connected to one another. The first layer is 
the input layer comprising the same number of neurons as the number of inputs, nin. 
The central layers are hidden layers, each with potentially a different number of neu-
rons per hidden layer, nhid. The final layer is the output layer with the same number 
of neurons as the number of outputs, nhid. We assume linear activation functions 
for the input and output layers and a tanh activation function for the hidden layer, 
which maps variables ranging from −∞ to ∞ to a domain extending between -1 to 1. 
The predicted outputs vector for each star, y, is calculated from the predicted inputs 
vector for each star, x, by

		  y = (wh,out tanh(wh,in · x + bh,in)) + bh,out ,

where wh,in is a nhid × nin matrix of weights, bh,in is a length-nhid vector of biases, wh,out is 
a length-nhid vector of weights, and bh,out is a length-nout vector of biases.

(7)
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This architecture has nθ = nhid(nin + 2) + nout model parameters. 

We investigate which inputs from the astrometric, photometric, and spectroscopic 
data can be used as predictors of the outputs of the stellar evolution models 
(mass, age, distance, and metallicity of a star) using the Spearman Rank Correlation 
Coefficient. We choose nine inputs, ten neurons in the hidden layer, and have four 
outputs and therefore our ANN (figure 2) has 114 parameters.

The posterior distributions of the ANN parameters, θ, can be estimated using Bayes’ 
law

                                              P(θ|ũ) = 

where P(ũ|θ) is the joint likelihood of all measured stellar properties, ũ (includes 
measured inputs, x̃, and measured outputs, ỹ ), given the model parameters, P(θ) is 
the prior on the model parameters, and P (ũ) is the distribution of the measured stellar 
properties. P (ũ) is the same for every model and can be ignored. The likelihood of the 
star’s measured properties, P (ũ|θ), is assumed to be the product of the likeli-hoods 
of each measured stellar property. We assume Gaussian measurement uncertainties. 
The NUTS sampler in PyMC3 is used to train the ANN on 80% randomly selected 
stars. The remaining 20% is used as an independent test of the ANN.

3.3 Making predictions with the ANN

Once we have obtained posterior distributions for the parameters of the ANN, P(θ |ũ ), 
we can calculate posterior predictive distributions for selected predicted stellar 
properties of new stars, yN , given the training sample, ũ, and the new measured 
inputs, x̃N, i.e.

	 P(yN|ũ, x̃N) =          P(yN|θ, x̃N) P(θ|ũ )  P( x̃N|xN) dθdxN .

P  (yN | θ, x̃N) is the probability of the new predicted outputs given some set of model 
parameters and new true inputs, P  (θ | ũ ) is the posterior distributions of the ANN 
model parameters evaluated in Section 3.2, and P (x̃N| xN)  is the distribution of new

Figure 1 | Architecture of ANN assuming nin = 9 (light 
grey), nout = 4 (middle grey), and one hidden layer with 
nhid = 10 neurons (dark grey).

P (ũ |θ ) P (θ)       
      P (ũ) 

(8)
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predicted inputs given the new measured inputs. Marginalizing the product of these 
probabilities over the parameters of the ANN and the new inputs give the posterior 
predictive distributions on the new outputs. Generating the posterior predictive 
distributions therefore does not re-quire one to engage with the stellar evolution 
models.

Figure 3 compares the means and standard deviations of the output logarithmic age 
distributions predicted by the ANN against those of the measured output distributions 
for the training and testing samples. Applying the ANN takes just over a minute on 
a single core to calculate posterior predictive distributions for mass, age, distance, 
and metallicity. This is comparable to the time taken to apply stellar evolution models 
using a Bayesian approach for just a handful of stars.

4. SUMMARY

Stellar evolution models were applied to a training sample of giant stars with 
astrometric, photometric, and spectroscopic data, and asteroseismology mass 
estimates to obtain Bayesian estimates of their masses, ages, distances, and 
metallicities. Supplementing the astrometric, photometric, spectroscopic data 
with chemical abundances, we train a Bayesian ANN to learn the relationship 
between these inputs and mass, age, distance, and metallicity. The ANN on average 
reproduces the stellar evolution model estimates for mass, age, distance, and 
metallicity with similar uncertainties, but takes far less time to run.
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Figure 3 | A comparison between predicted and 
measured mean logarithmic ages. The predicted 
output distributions are generated by the ANN and 
the measured output distributions are generated by 
the stellar evolution models for the training (grey) and 
testing (cyan) samples.
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Linghan Li
APPLICATIONS OF MCMC BAYESIAN SAMPLING METHODS 

In this article, four commonly used Bayesian sampling strategies (Metropolis-
Hasting MCMC, Affine-invariant ensemble MCMC, Hamiltonian Monte Carlo and 
Nested sampling) are introduced, and examples given to demonstrate their relative 
performance. 

1. METROPOLIS-HASTING SAMPLER
Metropolis-Hastings is a MCMC method for sampling from the posterior distribution 
by using a proposal distribution to perform a random jump, then accepting or 
rejecting proposed moves between current and proposed states with some 
probability. The proposal function is normally chosen to be symmetric but can be 
asymmetric if the sampling distribution is truncated or you have prior knowledge of 
its skew. A test problem of a 2D Gaussian with different correlations (range from 0 to 
0.99) is given below to show the results of MH MCMC.

The MH can successfully recover the posterior distribution but the efficiency 
decreases as the correlation increases to one. In this high correlation case, 
the proposed next step is very likely to fall down the sharp cliff. The theoretical 
requirements for using MH are quite minimal. However, it’s fundamentally a random 
walk. There’s no logic informing how large and which direction the jumps should be, 
given the current position. So the limitation for MH MCMC are normally related to low 
efficiency, as it requires a user-defined step size and it is hard to tune especially in 
high dimensional case. Furthermore, the step size is fixed, i.e. it is not proportional to 
the density distribution.

The MH can successfully recover the posterior distribution but the efficiency 
decreases as correlation trends to one. In this high correlation case, the proposed 
next step very likely to fall down the sharp cliff. so it stuck at this spot. The theoretical 
requirements for using MH are quite minimal. However, it’s fundamentally a random 
walk. There’s no logic informing how large and which direction the jumps should be 
given the current position. So the limitation for MH MCMC are normally related to 
low efficiency. As it requires user defined step size and it is hard to tune especially in 
high dimensional case. Furthermore, the step size is fixed, it is not proportional to the 
density distribution.

2. AFFINE-INVARIANT ENSEMBLE SAMPLER
The second scheme is affine invariant ensemble. It use linear transformation to 
transform the (θ1, θ2, ...) coordinate state into a new state space of ensembles, while 
the state is still proportional to the posterior. If some walkers catch the a probability 
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maximum, the others will move towards them and explore the surrounding space 
efficiently, and in such a way that the step size is proportional to the density of the 
target distribution. It can step around awkward distributiondistributions, and views the 
densities as equally difficult. The comparecomparison of the MH and affine-invariant 
ensemble samplers in term of efficiency is shown in Figure 1. This method is robust 
for many badly-scaled posteriors.  

Figure 1 | MH results for the 2D Gaussian with different correlations (left), and their corresponding CPU cost. This 
is compared with the affine-invariant ensemble scheme (right).

However, for some particular distributions such as a donut shape distribution, if two 
walkers are in the region of high density, the proposed position is highly unlikely to 
fall back to the high-density region. As shown in Figure 2, the basic affine-invariant 
ensemble scheme fails to recover the 25D donut-shape distribution. The proposed 
move is inefficient and it is not suitable for high-dimensional cases beyond the 
Gaussian distribution.

3. HAMILTONIAN MONTE CARLO (HMC) SAMPLER
HMC is a variant of MH algorithm and the way in which it differs from standard MH 
is by a using physics analogy to generate proposals. To understand the principle, 
we should imagine the path of a frictionless particle on a space which is related to 
posterior space. Because that space is essentially the inverse of posterior space then 
we tend to flow towards the regions of the modes. As shown in Figure 2, the results 
for HMC for sampling from the 25D donut distribution is very promising as it runs 
much quicker (around 1min) than the affine ensemble sampler.

Figure 2 | Posterior distribution 
recovered by ensemble 
method (left) and HMC (right)
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The latter needs hours. HMC recovers the space very well. 100 leapfrog steps is 
used, and the integration time delta is tuned until the acceptance rate is 0.688.

However, the aforementioned method finds it difficult to handle multi-modal posterior 
distribution as  it may get trapped at a local maximum. This is where nested samplers 
come in to play. 

4. NESTED SAMPLER

The nested sampling algorithm is different from the MCMC method. It approximates 
the marginal likelihood directly. An example of 3-modal 5D Gaussians with deep 
valleys between each modal would be problematic for the three aforementioned 
schemes but the nested sampler handles it very well.

Figure 3 | 3-mode 5D Gaussian distribution generated by the nested sampler, compared to the true distribution 
(amber).

Another limit of MCMC is that it typically focusses on the peak of the posterior and 
explores in that vicinity, with low sampling of the tails of the distribution. This is not a 
problem for parameter estimation, but it can be when calculating evidence. In nested 
sampling methods, the evidence is immediately obtained by summation.






