Computational fluid dynamics (CFD) is a simulation technique widely used in chemical and process engineering applications. However, computation has become a bottleneck when calibration of CFD models with experimental data (also known as model parameter estimation) is needed. In this research, the kriging meta-modelling approach (also termed Gaussian process) was coupled with expected improvement (EI) to address this challenge. A new EI measure was developed for the sum of squared errors (SSE) which conforms to a generalised chi-square distribution and hence existing normal distribution-based EI measures are not applicable. The new EI measure is to suggest the CFD model parameter to simulate with, hence minimising SSE and improving match between simulation and
experiments. The usefulness of the developed method was demonstrated through a case study of a single-phase flow in both a straight-type and a convergent-divergent-type annular jet pump, where a single model parameter was calibrated with experimental data. This talk is based on a journal article we previously published in the AIChE Journal.