Type-I X-ray bursts are interpreted as thermonuclear explosions in the atmospheres of accreting neutron stars in close binary systems. During these bursts, sufficiently high temperatures are achieved such that “breakout” from the hot CNO cycle occurs. This results in a whole new set of thermonuclear reactions known as the rp process. This process involves a series of rapid proton captures resulting in the synthesis of very proton-rich nuclei up to the Sn – Te (A ∼ 100) mass region. Various sensitivity studies have highlighted the 59Cu(p,γ)60Zn reaction as significant in its impact on energy generation along the rp -process path within X-ray bursts, and hence, the resultant light curve and final isotopic burnt ashes composition. In particular, competition between the 59Cu(p,α)56Ni and 59Cu(p,γ)60Zn reactions within the NiCu cycle directly determines whether the pathway of nucleosynthesis flows towards higher mass regions. At present, stellar reaction rates for both of these astrophysical processes are based entirely on statistical-model calculations. Recently, however, an indirect study of the nucleus 60Zn has surprisingly shown a plateau in the level-density of states in the region of interest, contrary to the usual expectation of exponential growth with increasing excitation energy. As a result, a statistical-model approach of the 59Cu(p,γ) reaction rate may be insufficient, and it is therefore now essential to explore the properties of excited states in 60Zn that influence the astrophysical 59Cu(p,γ)60Zn reaction. Specifically, the 59Cu(p,γ) reaction is expected to be dominated by resonant capture to excited states above the proton-emission threshold in 60Zn, Sp = 5105.0(4) keV, that lie within the Gamow energy window, Ecm ∼ 0.7 – 1.5 MeV. In this work, we aim to utilise the 59Cu(d,n) reaction in inverse kinematics at the Facility for Rare Isotope Beams (FRIB) to obtain the first measurement of single-particle properties of resonances in the 59Cu(p,γ) reaction. Specifically, 60Zn ions separated within the S800 spectrometer and identified prompt with respect to γ-rays detected by the GRETINA array will be used to determine the energy and angle-integrated cross sections of key resonance states, while neutrons detected by the LENDA array will be used to constrain the distribution of spin-parity assignments across the relevant excitation energy region of Type-I X-ray burst nucleosynthesis.